Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Minus One Two Three

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Some good thinking from Berny at Gordonstoun School, and others, connecting the algebra to the shape and position of the quadratic graph (parabola) :

When we set a problem on the NRICH site there's often an insight we hope you'll discover as you work your way around the problem.

In Minus One Two Three the insight was to see that expressions a. b. and c. below are just three different ways to represent the same quadratic form.
Three Expressions
b. is made from a., multiplying to 'remove the brackets', and c. is decided by looking at b.

Deciding the c. form is sometimes called 'completing the square', if you are not yet familiar with that, square $( x + 4 )$ to check that the three representations really do match.

It's, b, the second of those three forms, which helps most here because it reveals the axis of symmetry for the red graph below ( the blue graph is a simple x-squared parabola passing through the origin )

Looking at c. we can see that $x = -4$ will produce the lowest possible value for this expression ( $-4$ ).

The '$+ 4$' in the expression works like a boost for the $x$ value and lets everything on the $x$-squared curve happen $4$ 'earlier' - that is to the left of the origin.

Subtracting $4$, after the 'squaring', has the effect of lowering all values, or points on the graph, by $4$.

So c. is like the $x$-squared parabola but shifted four left and four down.

Graph shifted


For x smaller than $-4$ the graph will be 'falling' towards this minimum value and to the right (greater than $-4$) the graph will 'climb' again.

So as x values move from $-3$ , to $-2$ , to $-1$ , the value of the expression will be increasing, away to the right of that minimum point of $x = -4$.

So $-3$ will produce the lowest of these three values, and $-1$ will produce the highest.

In a similar way with the other expressions :

$(2x + 7)(x + 1)$ produces middle, lowest, and highest of the three values when $x = -3$, $-2$, and $-1$

$(2x - 3)(x + 5)$ produces highest, lowest, and middle of the three values when $x = -3$, $-2$, and $-1$

$(x - 3)(x - 1)$ produces highest, middle, and lowest of the three values when $x = -3$, $-2$, and $-1$

More generally, you might like to think about whether every pair of linear brackets, like a. would produce a parabola-type ($x$-squared) curve, and similarly whether every expression like b. would have to be symmetric about some $x$ value.



You may also like

Converse

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Consecutive Squares

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

Parabolic Patterns

The illustration shows the graphs of fifteen functions. Two of them have equations y=x^2 and y=-(x-4)^2. Find the equations of all the other graphs.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo