Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Road Maker

Age 14 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Bored with their spiral-shaped yellow brick road, the Munchkins have decided to build a new, more angular, road, coloured red and blue and laid out using a cartesian coordinate system.

You have been asked to design some possible new roads, but must follow these very particular rules laid down by the Munchkins:

0. The road is to be built on a planar cartesian coordinate system.

1. Roads are built entirely from red equilateral triangle tiles and blue square tiles, all of side length one unit.

2. Tiles in a road must be joined exactly along edges with no overlap.

3. Triangular tiles must have an edge parallel to the $x$-axis.

4. In a finished road, all tiles except the start tile and end tile must be joined along an edge to exactly 2 other tiles.

4. A 'start tile' is a blue square joined on exactly one edge with a vertex at $(0, 0)$. Each road must contain a unique start tile.

5. An 'end tile' is a red triangle joined on exactly one edge. Each road must contain a unique end tile. The coordinates of the point on this triangle opposite this attached edge is called the destination of the path.

Can you detemine which of these roads could satisfy the Munchkins' rules given a coordinate system of your choice?




How many roads which would not satisfy EXACTLY ONE of the Munchkins' rules can you make using 2, 3 or 4 tiles? 


 

You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo