Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Impossible Triangles?

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


You are given a limitless supply of triangular jigsaw pieces of type T1, T2, T3, T4 and T5

Using these pieces, you need to try to make larger triangular shapes without any overlap.

Three triangle shapes are shown in the picture below. Is it possible to create two-coloured triangles of these shapes without moving the pieces already placed?


Suppose next that you can move the pieces and choose two triangle types to work with. Which pairs of shapes can be used to make larger equilateral triangles? Which pairs of shapes can be used to make larger 30-60-90 triangles? See the video clip for a discussion on this part of the problem


NOTES AND BACKGROUND

This problem is all about either finding solutions or proving that there is no solution for any size of triangle shape.

For small triangle shapes, it is easy to check all possible configurations of pieces to check whether a solution exists. For larger triangle shapes the number of combinations of pieces gets larger extremely rapidly, and quickly reaches the point at which a check of all of the combinations is impossible, even on a supercomputer. Even if we have checked a large number of jigsaw sizes and found no solution, this does not necessarily mean that we cannot find a solution for a larger triangle shape. To find a solution, you often need to mine the depths of your cunning and ingenuity. To show that a solution does not exists you often have to use the concept of proof by contradiction .

Proving that a solution does not exist is often much easier than proving that a solution does exist. Interestingly, if a solution can be found, then it is usually very quick to check that the solution is correct, although finding the solution in the first place might be exceptionally difficult.This behaviour underlies the notion of the mysteriously titled 'P vs NP' problem, the solution of which will earn the solver $1,000,000

Ideas concerning proof are discussed in the fascinating article Proof: A Brief Historical Survey

Related Collections

  • Other videos

You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

OK! Now Prove It

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo