Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Can't Find a Coin?

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
Imagine your teacher has set you the homework task of throwing a coin 100 times and carefully recording your results in the order that they appear. Imagine that you can't be bothered to go and find a coin - the task is just too tedious. So you decide to try to fool your teacher.

How will you go about it?

One of these students made up their homework results, which one is the most suspicious?




BACKGROUND INFORMATION

Whilst all combinations of Heads and Tails are equally likely, certain sets of results (such as all heads or alternating Heads and Tails all the way) would look rather suspicious. Why is this?
The computer here is programmed to determine whether the set of Heads and Tails falls into a suspicious category or not. Rather interestingly, if you do generate the Heads and Tails truly randomly using a coin then there is a 95% chance the the computer will know that these were generated randomly. Don't believe it? Try it out!



You may also like

Stop or Dare

All you need for this game is a pack of cards. While you play the game, think about strategies that will increase your chances of winning.

Snail Trails

This is a game for two players. Does it matter where the target is put? Is there a good strategy for winning?

Game of PIG - Sixes

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo