Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Can't Find a Coin?

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Nabeelah from Langley Grammar School commented that:

Your teacher won't know whether you have cheated or not because they can't know what happend because the result can be anything.

Of course this is right but your results could be suspicious if they are very unlikely to occur.

Some people suggested ways in which to get results that appeared likely.

Eloi fromSt. Patrick's Catholic Primary School went about it like this:
We used a coin for the first twenty then we did something similar to it to get our solution.

Phil used this strategy that managed to fool the computer:
I started by making them all heads. I then flipped every second coin. Then I flipped every third coin, then every 5th, 7th, 11th, 13th, 17th ... until I'd gone through all the prime numbers. The computer was sure these were random.

Thomas from High Storrs suggested this:
The best way of making the results seem random is not having equal numbers of heads and tails. If you decide to have more heads then have large groups of heads with a few tails in between in groups of three. If you alter the size of the groups of heads then the results appear random.

Philippa from Ashcroft Academy worked out that Earl had the most suspicious results:
I think Earl is the cheat because his heads and tails are pretty much equal as if he tried too hard to simulate the random pattern of a coin.

Another way of telling that Earl is the most likely cheat is to notice that he has no strings of repeated results of length of 5 or more, and when you realise that there are 95 strings of 6 consecutive results (1st, 2nd, 3rd, 4th, 5th and 6th - 2nd, 3rd, 4th, 5th, 6th and 7th - 3rd, 4th, 5th, 6th, 7th and 8th...) you may find it suspicious that long strings of repeated results do not appear at all.




You may also like

Stop or Dare

All you need for this game is a pack of cards. While you play the game, think about strategies that will increase your chances of winning.

Snail Trails

This is a game for two players. Does it matter where the target is put? Is there a good strategy for winning?

Game of PIG - Sixes

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo