Or search by topic
In this article you will find explanations of circuits and how they correspond to the logical language we use to discuss mathematics. You will be challenged to summarise the workings of the circuits by filling in blanks in the corresponding truth tables. At any time you can switch to this version of the article to check your answers. |
First, connect a switch to a lamp as in Fig. 1 and click on the switch several times to change it from 1 to 0 and back to 1. Observe that the light goes on when the switch registers 1 and the light goes off when the switch registers 0. |
Fig. 1
|
Fig. 2
|
Now put a NOT gate into the circuit between the switch and the lamp, as shown in Fig. 2, and observe what happens when you change the switch from 1 to 0. |
Make and test the circuit shown in Fig 3. The truth table summarises the workings of this circuit. |
Fig. 3
|
$$ \begin{array}[t]{cc} p &q &$p\wedge q$ \\ 1 &1 &1 \\ 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &0 \\ \end{array} $$ |
Fig.4
|
Make the circuit shown in Fig 4. for the connective 'or'. Check your results with the truth table on the right. | $$ \begin{array}[t]{cc} p &q &$p\vee q$ \\ 1 &1 &1\\ 1 &0 &1\\ 0 &1 &1\\ 0 &0 &0 \\ \end{array} $$ |
Fig. 5
|
$$ \begin{array}[t]{cc} p &q &$p\vee q$ &$\neg (p\vee q)$ &$\neg p$ &$\neg q$ & $\neg p \wedge \neg q$ \\ 1 &1 &1 &0 &0 &0 &0 \\ 1 &0 &1 &0 &0 &1 &0 \\ 0 &1 &1 &0 &1 &0 &0 \\ 0 &0 &0 &1 &1 &1 &1 \\ \end{array} $$ |
$$ \begin{array}[t]{cc} p &q &$p\wedge q$ &$\neg (p\wedge q)$ &$\neg p$ &$\neg q$ & $\neg p \vee \neg q$ \\ 1 &1 &1 &0 &0 &0 &0 \\ 1 &0 &0 &1 &0 &1 &1 \\ 0 &1 &0 &1 &1 &0 &1 \\ 0 &0 &0 &1 &1 &1 &1 \\ \end{array} $$ |
Fig. 6
|
Fig. 7
|
$$ \begin{array}[t]{cc} p &$\neg p$ &$p \vee \neg p$ \\ 1 &0 &1 \\ 0 &1 &1 \\ \end{array} $$ |
The flow chart requires two numbers, M and N. Select several values for M and try to establish what the flow chart does.