Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Thousands and Millions

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

To give students an opportunity to work with large numbers.
To give students an opportunity to work on problems that require more than one simple step.

Possible approach


This printable worksheet may be useful: Thousands and Millions

  • Discuss the kinds of thinking required for these types of questions.

"If I were to ask you to work out answers to these questions, what information would you need to know?"

Make a list on the board.

"Some of these things you can work out from things you already know, some of them need an estimate."

  • Let pairs/groups of students select the questions they want to do, and then work together, on paper.

"You're going to be comparing answers with other groups, so make sure that you have written your final thinking carefully, to make it easier to spot differences."

"Each question should be done on a separate sheet of paper."

  • Students stick finished questions on the board, next to other solutions to the same problem, they can check whether theirs is the same/different to what other groups have done.

"If two groups work on the same question and get different answers, it may be because their estimates are different, or it may be because one method is wrong."

  • Teacher to monitor board and organise "case conferences" where answers or methods are different - i.e. representatives from the different groups come together and troubleshoot each others' working, then feed back to their own group.

Key questions

How can I ensure that I make reasonable estimates?

How can I set out my working most clearly?

 

Possible support

The process of adapting difficult problems, "making sense" of them in simpler cases, is a powerful technique for dealing with hard questions. This may be an appropriate moment at which to model this:

Pick one question to work on as a class task.

Ask the students to pose related, smaller questions that they can answer, and build up a body of work (display work?) around the theme, for example:

Your age if you are 100 seconds old, 1000 seconds old, 10000 seconds old, etc.
The age in months/days/hours/minutes or seconds of people in the class, their siblings, etc.
The time since key moments in history (or sport, etc) measured in different units.

Then encourage students to work towards the original question.

 

Possible extension

Which of these questions is the hardest, and why? Have a go at answering it.


Suggest 10 more questions using large numbers, decide whether they are one star, two star or three star in difficulty. What do you think comprises a three star answer? Solve a couple, or swap with another fast student and solve some of theirs.

 

You may also like

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Where Can We Visit?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Prime Magic

Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo