Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tiling

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Let's imagine we are tiling a floor or patio area.
Suppose the area is square and is 3 by 3.

Tiles come in three sizes: 1 by 1, 2 by 2 and 3 by 3.
You are allowed to use any arrangement of these tiles to cover the space completely.
However, none of the tiles can be cut.

For this challenge, we are interested in the total number of tiles you use for any arrangement.
For example, for the 3 by 3 square you could do it by using:


nine 1 by 1 tiles,

OR

one 2 by 2 and five 1 by 1 tiles,

OR

one 3 by 3 tile.


Therefore the smallest number of tiles is one and the largest is nine and the only other value you can get between one and nine is six (using one 2 by 2, and five 1 by 1).

Now imagine you also have tiles which are 4 by 4 in size.
What total numbers of tiles can you use for a square patio that is 4 by 4?
If you could have tiles which are 5 by 5 as well, what total numbers of tiles can you use for a square patio that is 5 by 5?

The final part of this activity is to examine carefully the answers you get for each of the three sizes of floors - 3 by 3, 4 by 4 and 5 by 5.

Now talk about and record what you notice.
Make some statements about what you therefore think will happen if someone takes the long time needed to explore a 6 by 6 and 7 by 7 square.


Related Collections

  • Back to LTHC resources

You may also like

Pebbles

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

It Figures

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo