Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Real-life Equations

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Teachers' Resources

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

This is a list of many of the most important equations in science. In each case, we have labelled the two variable quantities $x$ and $y$. The letters $a, b$ stand for constants in each case

Constant motion $\quad\quad\quad\quad\quad a = \frac{x}{y}$

Constant acceleration $\quad\quad\quad x = uy + \frac{1}{2} ay^2$

Beer Lambert Law $\quad\quad\quad\quad a=bxy$

Exponential decay $\quad\quad\quad\quad x=a e^{by}$

Michaelis-Menton $\quad\quad\quad\quad x = \frac{ay}{b+y}$

pH $\quad\quad\quad\quad\quad\quad\quad\quad\quad x = -\log_{10}(y)$

Can you identify the possible meanings of the variables $x$ and $y$ and the constants in each case?


Four graphs are shown above, where the two axes intersect at the origin $(0, 0)$.

The red crosses show four measurements. Although we do not know the numerical values (because there are no scales on the graphs), we can see whether the values are positive or negative in each variable. For example, the first measurement is positive in $x$ and positive in $y$; the second measurement is positive in $y$, negative in $x$.

For processes evolving according to each of the equations above, which measurements are possible?

 

You may also like

Equation Matcher

Can you match these equations to these graphs?

Maths Shop Window

Make a functional window display which will both satisfy the manager and make sense to the shoppers

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo