Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

PCDF

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

James from the MacMillan Academy was the first to crack this problem - well done James!

Steve says

The essence of this problem lies in the fact that a cdf $F(x)$ is non-decreasing and satisfies $0\leq F(x) \leq 1$, whereas a pdf is a non-negative function which integrates to 1 between $-\infty$ and $\infty$. The areas under the curves are the key points to consider. A cdf $F(x)$ can either reach the value $1$ for a finite value of $x_1$ or tend to $1$ as $x\to \infty$. In the first case, provided that the area under the cdf to the left of $x_1$ is 1 then this will work as a pdf for a random variable which is $0$ if $x> x_1$. In the second case, the area diverges and, therefore, cannot be used as a pdf.

To get the curves to match exactly for values of $x< x_1$ we will need to solve the equation $F'(x) = f(x)$.



Here is James's solution

Part 1

A CDF is always an increasing function which goes to $0$ as $X$ goes to $-\infty$ and 1 as x goes to $\infty$ and a pdf is a function that is never negative and has an area under it of 1.

The CDF can reach 1 at any point; let us only consider ones that reach it at 0 as all others either can be generalised from these by moving them left or right i.e. considering $F(x-a)$ where $a$ is the point where it reaches one, or they don't reach 1 until infinity which I shall deal with later.

As the PDF can do what it likes when $x$ is positive (so long as it stays non-negative and doesn't let the area exceed 1) it can make up difference between the area to the left of x=0 and 1 and so the area to the left of x=0 need only be between 0 and 1. So the only rules controlling the CDF are that to the left of where it reaches F(x)=1 the area underneath it must be less than or equal to 1 which is true for any of a multitude of CDF's

Regarding the ones that don't reach 1 until $\infty$ these would have to be a solution to PDF=CDF for $x< \infty$, consider any finite value of $x$ if $F(x)> 0$. At that point then it must be that value or greater until $x=\infty$ giving area under it $\geq F(x)\times \infty$ which is absurd and definitely larger than 1 unless $F(x)$ is infinitesimal for all $x$ in which case $F(x)$ wouldn't be tending to 1 and so such a CDF cannot possibly be a PDF.

Part 2
The integral of a CDF from $-\infty$ to $\infty$ is always $\infty$. Thus a CDF cannot be used as a pdf.

Part 2

As $f(x)=F'(x)$ for $f(x)=F(x)$ we would need $F(x)=F'(x)$. Thus, writing $F(x)=y$, the CDF must be a solution to the differential equation

$$
\frac{dy}{dx}=y
$$
This gives
$$
\frac{1}{y}\frac{dy}{dx}=1
$$
Integrating gives
$$
\int \frac{1}{y}dy = \int 1 dx
$$
Thus $y=f(x)=e^{x+c}$.

Putting in the boundary conditions that $F(0)=1$ give the function $f(x) = e^x$.




You may also like

PDF

Given a probability density function find the mean, median and mode of the distribution.

Scale Invariance

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Into the Exponential Distribution

Get into the exponential distribution through an exploration of its pdf.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo