Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Inequalities

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

Another crop of good solutions! Robbie said he and his Mum nearly lost their marbles over this one. Quite a number of you reasoned that there are the more yellow marbles than any other colour. All three solutions were found by Josh of Alameda School Ampthill (well done Josh!), by Y9 of the Mount School, York as a team effort, by James of Hethersett High School, who used a spreadsheet to good effect and, from the same school, by Rachel, Geoffrey, and Sarah and also by the Key Stage 3 Maths Club, Strabane Grammar School, N. Ireland. The most carefully reasoned argument covering all possible cases was done by Xin Ying from Tao Nan School, Singapore.

Let R, G, Y and B be the number of Red, Green, Yellow and Blue marbles respectively.

There are 4 conditions to fulfil: (1) R + G + Y + B = 12; (2) R > G; (3) (G+B) > R;

(4) (Y+G)> (R+B). We shall use logical thinking to get the answer.

From condition (3), (R+B) is at most (12 ΒΈ 2) - 1 = 5.

So (R+B) could be 5, 4, 3, 2, or 1.

Case 1 : (R+B)=1

Impossible as R and B are both not zeros.

Case 2 : R+B = 2

Then, R=1 and B=1. But R> G and G is not zero. So this case is not possible.

Case 3 : (R+B) = 3

Then (R+B) = 1+2 or 2 +1. But it must be that R=2 and B=1 so as to fulfil condition (2). Now, R> G tells us that G=1. But (G+B) is not greater than R. Condition (3) is violated. So this case is not possible.

Case 4 : (R+B) = 4

(a) R+B = 1+3 or 3+1. It must be that R=3 and B=1 from condition (2). Since R> G, G=2 or 1. Either case, (G+B) is not greater than R. So this case is impossible.

(b) R+B=2+2. Then R=2 and B=2. Since R> G, G=1. Then, Y=7. Upon checking, all 4 conditions are fulfilled. This case works!

Case 5 : (R+B)=5

(a) R=2 and B=3. Since R> G, G=1. So, Y=6. Upon checking, all 4 conditions are fulfilled. This case works!

(b) R=3 and B=2. Since R> G, G=2 or 1. If G=1, (G+B) is not greater than R. This case is not possible. So G=2. Then Y=5. Upon checking, all 4 conditions are fulfilled. This case works!

(c) R + B = 4 + 1 (1+4 is impossible). So R=4 and B=1. Since R> G, G = 3, 2 or 1. But either case, (G+B) is not greater than R. This case is impossible.

In short, only 3 situations are possible:

5 yellow marbles, 3 red marbles, 2 blue marbles and 2 green marbles.

7 yellow marbles, 2 red marbles, 2 blue marbles and 1 green marble.

6 yellow, 2 red, 3 blue and 1 green marbles.


You may also like

Plutarch's Boxes

According to Plutarch, the Greeks found all the rectangles with integer sides, whose areas are equal to their perimeters. Can you find them? What rectangular boxes, with integer sides, have their surface areas equal to their volumes?

All-variables Sudoku

The challenge is to find the values of the variables if you are to solve this Sudoku.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo