Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Into the Normal Distribution

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We can estimate the probability of selecting a negative random variable by evaluating the area under the curve in the region of negative x. Approximating this area using a triangle will give us an over-estimate of the actual probability.

Blue Curve: Pr(X< 0) $\approx$ 0.5 x 2 x 0.25 = 0.25

Red Curve: Pr(X< 0) $\approx$ 0.5 x 2 x 0.1 = 0.1

Black Curve: Pr(X< 0) $\approx$ 0.5 x 2 x 0.05 = 0.05

A normal distribution is symmetric about its mean. This allows us to estimate the mean of each distribution by inspection:

$\mu_{Blue}$ = 1

$\mu_{Red}$ = 2

$\mu_{Black}$ = 3

We know that f(x) = $\frac{1}{ \sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^2}{2 \sigma ^2}}$

If we evaluate f(x) at x = $\mu$ the exponential will disappear ($e^0 = 1$)

We can then solve for $\sigma$

$f(\mu) = \frac{1}{ \sigma \sqrt{2 \pi}} $

$\sigma =\frac{1}{\sqrt{2 \pi} f(\mu)}$

Evaluating f($\mu$) from the curves and substituting $\mu$ into the expression we find that:

$\mu_{Blue}$ = 1, $\sigma^2_{Blue} = 1$

$\mu_{Red}$ = 2, $\sigma^2_{Red} = 2$

$\mu_{Black}$ = 3, $\sigma^2_{Black} = 3$

You may also like

PDF

Given a probability density function find the mean, median and mode of the distribution.

Scale Invariance

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Into the Exponential Distribution

Get into the exponential distribution through an exploration of its pdf.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo