Or search by topic
Substitute $x = 2.5$ and $y =10$ into each equation and rearrange to find the values of the constants.
For each equation substitue a series of $x$ values into the equation and tabulate the corresponding $y$ values. Then match the equation to the curve which gives the correct trajectory of points.
Note: one point should be sufficient to match the equation to the curve.
Curve 1 | $y = 4x$ | (as this is the only linear plot) |
Curve 2 | $y = \frac{8}{5} x^2$ | (at $x = 2.25$ , $y = 1.6 \times 2.25^2 = 8.1$ which matches the pink curve) |
Curve 3 | $y = \frac{24}{125} x^4 + x$ | ( at $x =1$, $y = 1 + 0.192 = 1.192$ which matches the black curve) |
Curve 4 | $y = \frac{16}{25} x^3$ | (at $x =1$, $y = 0.64$ which matches the red curve) |
The volume generated by rotation about the y axis can be found by the method of shells or the method of discs, here we use the method of shells.
The method of shells is based upon filling the solid of revolution with an infinite number of thin cylindrical shells. The volume of each shell is equal to its circumference ($2 \pi x$) multiplied by its height $\left[ y = f(x) \right]$, by allowing the thickness of each shell to approach zero and summing all shells we obtain the definite integral for the volume of revolution $V_{rev}$
$$V_{rev} = \int 2 \pi \ x \ y \mathrm{\ d}x $$The volume calculated via the method of shells will be the volume between $x$-axis, the curve and the line $x=2.5$ (when we rotate the curve about $y$).
The volume of the vessel $V_{vessel}$ can be found by subtracting the volume of revolution $V_{rev}$ from the volume of a cylinder of height $10 \mathrm{\ cm}$ and radius $2.5 \mathrm{\ cm}$.
$$V_{vessel} = (10 \times 2.5^2 \pi) - V_{rev} = \frac{125\pi}{2}- V_{rev}$$Volume generated by rotation about $y$
$$V_{rev} = \int_0^{2.5} 2\pi (x)(4x) \ \mathrm{d}x = 8\pi \left[\frac{1}{3}x^3 \right]^{2.5}_0 = \frac{8 \pi}{3} \times 2.5^3 =\frac{125 \pi}{3}$$ $$\Rightarrow V_{vessel} = \frac{125\pi}{2} - \frac{125 \pi}{3} = \frac{125 \pi}{6} = 65.45 \mathrm{\ cm^3 \quad (4\ s.f.)}$$Volume generated by rotation about $y$
$$V_{rev} = \int_0^{2.5} 2\pi (x) \left( \frac{8}{5}x^2 \right) \ \mathrm{d}x = \frac{16\pi}{5} \left[ \frac{1}{4}x^4 \right]^{2.5}_0 = \frac{4 \pi}{5} \times 2.5^4 = \frac{125 \pi}{4}$$ $$\Rightarrow V_{vessel} = \frac{125\pi}{2} - \frac{125 \pi}{4} = \frac{125 \pi}{4} = 98.17 \mathrm{\ cm^3 \quad (4\ s.f.)}$$Volume generated by rotation about $y$
$$V_{rev} = \int_0^{2.5} 2\pi (x) \left( \frac{24}{125}x^4 + x \right) \ \mathrm{d}x = 2\pi \left[ \frac{24}{125} \frac{1}{6}x^6 + \frac{1}{3}x^3 \right]^{2.5}_0 = \left(\frac{8}{125} \times 2.5^6 + \frac{2}{3} \times 2.5^3 \right) \pi = \frac{625 \pi}{24}$$ $$\Rightarrow V_{vessel} = \frac{125\pi}{2} - \frac{625 \pi}{24} = \frac{875 \pi}{24} =114.5 \mathrm{\ cm^3 \quad (4\ s.f.)}$$Volume generated by rotation about $y$
$$V_{rev} = \int_0^{2.5} 2\pi (x) \left( \frac{16}{25}x^3 \right) \ \mathrm{d}x = \frac{32\pi}{25} \left[ \frac{1}{5}x^5 \right]^{2.5}_0 = \frac{32 \pi}{125} \times 2.5^5 = 25 \pi$$ $$\Rightarrow V_{vessel} = \frac{125\pi}{2} - 25 \pi = \frac{75 \pi}{2} = 117.8 \mathrm{\ cm^3 \quad (4\ s.f.)}$$We can find the volume of revolution at some general height $h$, set this volume $V(h)$ to half the volume of the vessel and solve for $H$ the height at this volume.
From above $V_{vessel} = \frac{125 \pi}{6}$
$$\Rightarrow \frac{\pi}{48} H^3 = \frac{1}{2} \frac{125 \pi}{6}$$ $$\Rightarrow H = = \sqrt[3]{48 \frac{125}{12}} = \sqrt[3]{500} = 7.937 \mathrm{\ cm^3 \quad (4\ s.f.)}$$From above $V_{vessel} = \frac{125 \pi}{4}$
$$\Rightarrow \frac{5\pi}{16} H^3 = \frac{1}{2} \frac{125 \pi}{4}$$ $$\Rightarrow H = \sqrt{\frac{16}{5} \frac{125}{8}} = \sqrt{50} = 7.071 \mathrm{\ cm^3 \quad (4\ s.f.)}$$In order to evaluate the volume by the method of discs I would first need to arrange the function into the form $x = f(y)$, this may be quite difficult. For this reason, we shall evaluate the volume using the method of shells.
The method of shells will not give the volume of the vessel directly; instead it gives the volume to the right of the curve rather than left. To find the volume of the vessel we must subtract the volume of revolution from the volume of a cylinder of radius $x$ and height $y$.
$$V(x) = \pi x^2 y - \int_0^x 2 \pi x y \ \mathrm{d}x$$We need to get this equation in terms of one unknown $x$, we can eliminate $y$
$$y = \frac{24}{125}x^4 + x$$ $$V(x) = \pi x^2 \left( \frac{24}{125}x^4 + x \right) -2 \pi \int_0^x \frac{24}{125} x^5 + x^2 \ \mathrm{d}x = \pi \left( \frac{24}{125}x^6 + x^3 - 2 \left[\frac{4}{125}x^6 + \frac{1}{3}x^3 \right] ^x_0 \right) = \pi \left( \frac{16}{125}x^6 + \frac{1}{3}x^3 \right)$$From above $V_{vessel} = \frac{875 \pi}{24}$, calling the radius of the vessel at the half full point $R$
$$\Rightarrow \pi \left( \frac{16}{125}R^6 + \frac{1}{3}R^3 \right) = \frac{1}{2} \frac{875 \pi}{24}$$ $$\Rightarrow \frac{16}{125}(R^3)^2 + \frac{1}{3}R^3 - \frac{875}{48} = 0$$Quadratic in $R^3$, solving gives one positive solution:
$$R^3 = 10.703 \Rightarrow R = \sqrt[3]{10.703} = 2.204$$Using equation of curve to find corresponding depth $H$:
$$H = \frac{24}{125}R^4 + R = 6.732\mathrm{\ cm^3 \quad (4\ s.f.)}$$From above $V_{vessel} = \frac{75 \pi}{2}$
$$\Rightarrow \frac{3\sqrt[3]{5}\pi}{4\sqrt[3]{4}} H^\frac{5}{3} = \frac{1}{2} \frac{75 \pi}{2}$$ $$\Rightarrow H = \left( \frac{4\sqrt[3]{4}}{3\sqrt[3]{5}\pi} \frac{75}{4} \right)^\frac{3}{5} = \left( \frac{25\sqrt[3]{4}}{\sqrt[3]{5}} \right)^\frac{3}{5} = \sqrt[5]{12500} = 5\sqrt[5]{4} = 6.598\mathrm{\ cm^3 \quad (4\ s.f.)}$$