Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Brimful 2

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

The $y$-axis is an asymptote for the following curves:
$$y =- \frac{1}{x} \quad\quad y= -\frac{1}{x^2} \quad\quad y^2= \frac{1}{x^3}\quad\quad y = \ln(x)-1$$
Imagine rotating the $x> 0, y< -1$ regions of these curves about the $y$-axis to form a set of hollow vessels. Which vessels are of finite volume?


Numerical extension questions

  1. Imagine that someone wishes accurately to engineer flasks for which the interior surfaces are given by these equations. They are to be truncated with a sealed base of radius $1$ micron, and a top opening of radius $1$cm. What would be their storage capacites and sizes? Are the resulting sizes such that you could envisage good approximations to such flasks being practically possible to make?
  2. Imagine that similar vessels are made with truncated and open tops (of radius $1$cm) and bottoms.They are to be designed so that they do not leak when filled with water. How long would such flasks need to be? (Assume that the diameter of a water molecule is $3$nm)
  3. Imagine that such flasks are made with open narrow ends of diameter $4$nm. Water is forcibly pumped into the flasks at a rate of $1$cm$^3$ s$^{-1}$, to create a jet of water consisting of a single water molecule. How fast would such jets emerge?



You may also like

Brimful

Can you find the volumes of the mathematical vessels?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo