Or search by topic
The $y$-axis is an asymptote for the following curves:
$$y =- \frac{1}{x} \quad\quad y= -\frac{1}{x^2} \quad\quad y^2= \frac{1}{x^3}\quad\quad y = \ln(x)-1$$
Imagine rotating the $x> 0, y< -1$ regions of these curves about the $y$-axis to form a set of hollow vessels. Which vessels are of finite volume?
Numerical extension questions