Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Brimful 2

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

 

Part 1:


The volume generated by rotation about the $y$-axis can be found by the method of shells or the method of discs.

The method of shells is based upon filling the solid of revolution with an infinite number of thin cylindrical shells. The volume of each shell for the revolution about the $y$-axis of the curve $y = f(x)$, is equal to its circumference $2 \pi x$ multiplied by a thickness $\mathrm{d}x$ multiplied by its height $f(x)$. By allowing the thickness of each shell to approach 0 ($\mathrm{d}x \to 0$) and summing all shells we obtain the definite integral:
$$ \textrm{[Volume]} = \int 2 \pi \ x \ f(x) \ \mathrm{d}x$$

Here we shall use the conventional method of discs; we split the solid up into a series of thins slices and by rotating a slice about the y axis we will generate a cylinder of volume $\pi f(y)^2\ \mathrm{d}y$. Letting $\mathrm{d}y \to 0$ and summing all discs we obtain the definite integral:
$$\textrm{[Volume]} = \pi \int f(y)^2 \ \mathrm{d}y$$

 

 

 

Curve 1:


$y = \frac{-1}{x}$

$f(y)^2 = y^{-2}$

Limits of integration are $y=-\infty \to y=-1$

$\displaystyle \textrm{[Volume]} = \pi \int_{- \infty}^{-1} y^{-2} \ \mathrm{d}y = - \pi $

We can therefore fill this vessel.

 

 

 

 

Curve 2:


$y = \frac{-1}{x^2}$

$f(y)^2 = \frac{-1}{y}$

Limits of integration are $y=-\infty \to y=-1$

$\displaystyle \textrm{[Volume]} = \pi \int_{- \infty}^{-1} \frac{-1}{y} \ \mathrm{d}y = \infty $

We will therefore never be able to fill this vessel.

 

 

 

 

Curve 3:


$y = \frac{1}{x^{1.5}}$

$f(y)^2 = y^{\frac{-4}{3}}$

Limits of integration are $y=-\infty \to y= -1$

$\displaystyle \textrm{[Volume]} = \pi \int_{- \infty} ^{-1} y^{\frac{-4}{3}} \ \mathrm{d}y = 3\pi$

We can therefore fill this vessel.

 

 

 

 

Curve 4:


$y = \ln(x)-1$

$f(y)^2 = e^{2y+2}$

Limits of integration are $y=-\infty \to y=-1$

$\displaystyle \textrm{[Volume]} = \pi \int_{- \infty}^{-1} e^{2y+2} \ \mathrm{d}y = \frac {\pi}{2} $

We can therefore fill this vessel

 

 

 

 

Extension 1:

 

 

 

Curve 1: $y = \frac{-1}{x}$


At $x = 1$, $y = -1$
At $x = 10^{-4}$, $y = -10^4$

$\displaystyle \textrm{[Volume]}= \pi \int_{-10^4}^{-1}y^{-2} \ \mathrm{d}y$

$\textrm{[Volume of flask]} = 3.14 \mathrm{\ cm^3}$

 

 

 

Curve 2: $y = \frac{-1}{x^2}$


At $x = 1$, $y = -1$
At $x = 10^{-4}$, $y = -10^8$

$\displaystyle \textrm{[Volume]} = \pi \int_{-10^8}^{-1} -y^{-1} \ \mathrm{d}y$

$\textrm{[Volume of flask]} = 57.9 \mathrm{\ cm^3}$

 

 

 

 

Curve 3: $y = \frac{1}{x^{1.5}}$


At $x = 1$, $y = -1$
At $x = 10^{-4}$, $y = 10^6$

$\displaystyle \textrm{[Volume]} = \pi \int_{-1}^{10^6} y^{\frac{-4}{3}} \ \mathrm{d}y$

$\textrm{[Volume of flask]} = 9.33 \mathrm{\ cm^3}$

 

 

 

 

Curve 4: $y = \ln(x)-1$


At $x = 1$, $y = 0$
At $x = 10^{-4}$, $y =\ln(10^{-4})$

$\displaystyle \textrm{[Volume]} = \pi \int_{\ln(10^{-4}-1)}^{-1}e^{2y+2} \ \mathrm{d}y = \frac{\pi}{2} \Big[e^{0}-e^{\ln (10^{-4})} \Big]$

$\textrm{[Volume of flask]} = 1.57 \mathrm{\ cm^3}$

All of the above volumes appear too small to be used as real flasks, $1 \mathrm{\ litre} = 1000 \mathrm{\ cm^3}$ would be a reasonable volume for a flask.

 

 

 

 

Extension 2:


We need to calculate the value of $y$ at which $x = \textrm{[radius of a molecule]} = 1.5 \mathrm{\ nm}$
The height is then given by the difference between this $y$ value and $y = -1$

$\textrm{[Height]} = -1 \mathrm{\ cm} - y(\textrm{evaluated at }x =-1.5 \times 10^{-7} \mathrm{\ cm}) $
$\textrm{[Height of flask 1]} = 66.667 \times 10^4 \mathrm{\ cm}= 66.67 \mathrm{\ km}$
$\textrm{[Height of flask 2]} = 4.444 \times 10^{13} \mathrm{\ cm} = 444.4 \mathrm{\ Gm}$
$\textrm{[Height of flask 3]} = 1.72 \times 10^{10} \mathrm{\ cm}= 172 \mathrm{\ Mm}$
$\textrm{[Height of flask 4]} = 15.7 \mathrm{\ cm}$

 

 

 

 

 

 

You may also like

Brimful

Can you find the volumes of the mathematical vessels?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo