Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Immersion

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Why do this problem?

This problem provides an opportunity to think about what the shape of a graph means, by relating the graph to the situation which created it. Students need to reason which graph matches with which solid, and clearly communicate their ideas. Along the way, there is the chance to revisit formulas for working out the volumes of solids.

 

Possible approach

Start by asking students to sketch the four solids described in the problem:
1) A sphere of radius $1$cm
2) A solid cylinder with height $\frac{4}{3}$cm and radius $1$cm
3) A solid circular cone with base radius $1$cm and height $4$cm.
4) A solid cylinder of height $\frac{4}{9}$cm with a hole drilled through it, leaving an annular (ring-shaped) cross-section with internal radius $1$cm and external radius $2$cm.

Then for each of the solids, students could work out the volume - this is a good opportunity to discuss the advantages of leaving answers in terms of $\pi$.

Now hand out this worksheet with the five graphs on. Challenge students to label the axes and the five graphs, annotating each curve along the way to show key points where interesting things are happening, and how they relate to the shape of the solid.

Finally, bring the class together to discuss their answers and how they pieced together which graph is which.

 

Key questions

What does a straight line section of graph tell you about the cross section of the solid being immersed?

What about a curve which gets steeper and steeper? Or one which flattens off gradually?
Are there any symmetrical features of the solids which help to identify the correct lines?
 

Possible support

Maths Filler offers an opportunity to work with graphs showing changing volumes based on simple surface areas and graphs made up of straight lines rather than curves.

Possible extension

See extension task at the end of the problem.

 

 

 

 

 

 

 

You may also like

Three Cubes

Can you work out the dimensions of the three cubes?

Concrete Calculation

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to make the concrete raft for the foundations?

In a Spin

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo