Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Approximately Certain

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Teachers' Resources

Why do this problem?

This problem gives an excellent workout in estimation and calculation using a wide range of physical equations and situations. It is rather open, and will particularly benefit those students used to following recipes in their work. It also highlights the fact that in science it is rather hard to calculate anything without making some sort of assumptions. Good science will clearly state and be aware of these assumptions; bad science will ignore them.

Possible approach

This problem could be approached in two stages. First of all the problem could be discussed as a group without any calculations being made (except in students' heads or on the back of an envelope). Once the issues are uncovered, students might wish to begin calculation or might need to turn to the internet or other resources for more information.

It is likely that students' answers and approximations will vary. Once the task is finished, groups could feed back to the rest of the class. Is their reasoning and explanation clear? They will need to convince the rest of the class that their ordering is correct. This could be done with each group attempting each of the four different sets of data. Alternatively, different groups could attempt different parts of the task, in which case the explanations might need to take on a more detailed focus.

There are two different levels at which the problem might be approached

Basic: Produce a means of calculating each part with various estimated values of the data. Order the answers.
Advanced: Produce definite upper and lower bounds for the quantities, using upper and lower bounds for the input data. The ordering is only guaranteed when these intervals do not overlap.

Don't lose sight of the fact that the ordering is important. If a very crude approimation shows that one of the quantities is clearly largest or smallest, then that is sufficient. Of course, students might be interested in computing a more accurate answer out of general interest.
 
This worksheet has all the quantities.
 

Key questions

  • What is precisely stated and what is not precisely stated?
  • What factors would complicate the most accurate calculation? How can we deal with these? Which factors can we neglect and which are important?
  • Can you give quick, sensible lower and upper bounds on the quantities before attempting a computation?
  • Is a detailed computation necessary for all of the parts of the problem?

Possible extension

The most able students should be required to approach the task with the most rigour. They might also consider the best way to represent their results. What accuracies are most relevant? Is a linear measurement scale suitable?

Possible support

Focus on the basic method of approaching the task, as mentioned in the possible approach.

You may also like

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Growing

Which is larger: (a) 1.000001^{1000000} or 2? (b) 100^{300} or 300! (i.e.factorial 300)

Archimedes and Numerical Roots

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo