Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Archimedes and Numerical Roots

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

This problem builds on the one in May on calculating Pi. This brilliant man Archimedes managed to establish that $3\frac{10}{71} < \pi < 3\frac{1}{7}$. 

He needed to be able to calculate square roots first so that he could calculate the lengths of the sides of the polygons which he used to get his approximation for $\pi$. How did he calculate square roots? He didn't have a calculator but needed to work to an appropriate degree of accuracy. To do this he used what we now call numerical roots.

How might he have calculated $\sqrt{3}$?

This must be somewhere between 1 and 2. How do I know this?

Now calculate the average of $\frac{3}{2}$ and 2 (which is 1.75) - this is a second approximation to $\sqrt 3$.
i.e. we are saying that a better approximation to $\sqrt 3$ is  $$\frac{(\frac{3}{n} + n)}{2}$$ where n is an approximation to $\sqrt 3$ .

We then repeat the process to find the new (third) approximation to $\sqrt{3}$ $$\sqrt{3} \approx {(3 / 1.75 + 1.75) \over {2}} = 1.73214... $$

to find a forth approximation repeat this process using 1.73214 and so on...

How many approximations do I have to make before I can find $\sqrt{3}$ correct to five decimal places.

Why do you think it works?

Will it always work no matter what I take as my first approximation and does the same apply to finding other roots?


You may also like

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

Root to Poly

Find the polynomial p(x) with integer coefficients such that one solution of the equation p(x)=0 is $1+\sqrt 2+\sqrt 3$.

Consecutive Squares

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo