Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Archimedes and Numerical Roots

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

There was a correct solution from Andrei Lazanu (School 205, Bucharest). The first part is very clear but I have tried to simplify his solution to the second part for inclusion here. Perhaps someone could improve on this for us. Thank you for your hard work Andrei.

First, I approximated $\sqrt3$ using the method given in the problem. I know that $\sqrt3$ is between 1 and 2 because 1 2 < (?3) 2 < 2 2 or 1 < 3 < 4.

I know that the approximation of ?3 correct to five decimal places is: $$\sqrt{3} \approx {1.73205}$$Now I show each of the approximation steps:

First approximation: $$\sqrt{3} \approx {2}$$Second approximation: $$\sqrt{3}\approx {{{3\over{2}} + 2} \over {2}} ={1.75}$$Third approximation: $$\sqrt{3} \approx {{{3\over{1.75}} + 1.75} \over {2}} = {1.732142857}$$ Fourth approximation: $$\sqrt{3} \approx {{{3\over{1.732142857}} + 1.732142857} \over {2}} = {1.73205081}$$ So, four approximations are sufficient to approximate $\sqrt{3}$ correct to 5 decimal places.

You could think of the above as $$ \sqrt{a^2}\approx {{{a^2\over{n}} + n} \over {2}} ={m}$$ Where n is the approximation to the root of a 2 (that is "a") and m the next approximation.

The first approximation (n) differs from a by k. I can therefore write n as a + k where k is numerically less than a (k could be negative).

So I have the next approximation $$\quad = {{{a^2\over{a+k}} + a+k} \over {2}}$$The next approximation = $${{{a^2\over{a+k}} + a+k} \over {2}}$$But $${{{a^2\over{a+k}} + a+k} \over {2}} = {{2a^2 + 2ak + k^2} \over{2(a+k)}}$$ and $${{2a^2 + 2ak + k^2} \over{2(a+k)}} = {{2a(a+k)+ k^2} \over{2(a+k)}}= {{2a(a+k)} \over{2(a+k)}} + {{k^2} \over{2(a+k)}} = a + {{k^2} \over{2(a+k)}}$$While a is positive, $${{k^2} \over{2(a+k)}}$$must be positive as k is numerically less than a.

So $$a< {{{a^2\over{a+k}} + a+k} \over {2}}$$ But the same equation could be written as: $${{2a^2 + 2ak + k^2} \over{2(a+k)}} = {{a^2+ (a+k)^2} \over{2(a+k)}}= {{(a+k)^2} \over{2(a+k)}} + {{a^2} \over{2(a+k)}} = {{a+k} \over{2}} + {{a^2}\over {2(a+k)}}$$The following number is equal to a+k: $${{a+k} \over{2}} + {{a^2}\over {2(a+k)}} + {{2ak+k^2}\over{2(a+k)}} = {{(a+k)^2 + a^2 + 2ak + k^2}\over{2(a+k)}} = {{a^2 + k^2 + 2ak + a^2 + 2ak + k^2}\over{2(a+k)}} = {{2(a^2 + 2ak + k^2)}\over{2(a+k)}}={{(a+k)^2}\over{(a+k)}} = (a+k)$$ This means that $${{{a^2\over{a+k}} + a+k} \over {2}}< {a+k}.$$From the two inequalities I obtain that: $$a< {{{a^2\over{a+k}} + a+k} \over {2}}< {a+k}.$$ This means that the solution obtained goes closer and closer at each step to the real value of whether k is positive or negative.

You may also like

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

Root to Poly

Find the polynomial p(x) with integer coefficients such that one solution of the equation p(x)=0 is $1+\sqrt 2+\sqrt 3$.

Consecutive Squares

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo