Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Translating Lines

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Jiwon Jung noticed:

You can tell it's translated because the gradient hasn't changed, and the pairs of lines are parallel.

Ellie from Chiswick expanded and gave reasoning;

I experiemented with the lines and translations. I noticed that if you just translate up and down (in the $y$ direction) then the constant goes up or down the same number of places as the left has moved.
If you move sideways, then it is in proportion to the gradient of the line.

I made this into a formula.
If the original line is $y=ax+b$, and we move $X$ right and $Y$ up, then the new line is $y=ax+b-aX+Y$. So the constant becomes $b-aX+Y$.
So the constant is the same, but minus the gradient times the movement (if you move left then $X$ is negative), and then plus the vertical movement (of you move down then $Y$ is negative).

So the pairs are:


So lots of values of $X$ and $Y$ will make these work, as you can make equations that describe the motion, and then any solutions will work. You could even plot the solutions, they themselves would be straight line graphs.
So for $y=2x+1$ translated to $y=2x-4$, the $X$ and $Y$ motion satisfies $1-2X+Y=-4$ by the equation above, so any $X,Y$ satisfying $Y-2X=-5$ will do the translation above.

Related Collections

  • Functions and Graphs - Stage 3

You may also like

Is There a Theorem?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Khun Phaen Escapes to Freedom

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Frieze Patterns in Cast Iron

A gallery of beautiful photos of cast ironwork friezes in Australia with a mathematical discussion of the classification of frieze patterns.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo