Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cobalt Decay

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem gives an interesting problem solving challenge for students aged 16/17 with an interest in both chemistry and mathematics. It gives a good exercise in mathematical modelling: a physical process needs to be represented by equations which may then be analysed mathematically. It is not simply routine, nor is it especially difficult if considered in the right ways. However, it is a good example of a situation in which simply trying to 'do the algebra' will not work.

Possible approach

This problem works well for individual use. It could be solved numerically, using trial and error, or graphically using many ideas from linear algebra.

If done as a group or set as a homework, it would be interesting to compare solutions, as there are several different possible routes to a conclusion. What do students think of each others answers? Which seem most powerful? Neatest?

Key questions

Could the sample be a pure sample of a single isotope? Why?
How many pieces of information are given to us in the question?
Is there any way of distinguishing between the different isotopes for the timescales given?
Chemically, what is happening in the decay? How does decay affect the mass of the sample? Is this a significant effect?

Possible extension

Chemical extension:
  • Consider carefully the effects of the decay on the mass of the sample, taking into account that some matter will be lost.
  • Energy is radiated from the system during decay. Energy is related to mass via Einstein's equation $E=mc^2$. Is this effect relevant or significant?
Mathematical Extension:
  • Explore how many more data points would be needed to give a unique solution to the problem. What is the minimum number of extra data points needed to give a unique solution?

Possible support

Encourage trial and error, starting with equal masses of each sample. Then raise or lower the proportions of two of the masses, using a spreadsheet to do the numerical calculations.

You may also like

A Method of Defining Coefficients in the Equations of Chemical Reactions

A simple method of defining the coefficients in the equations of chemical reactions with the help of a system of linear algebraic equations.

Mathematical Issues for Chemists

A brief outline of the mathematical issues faced by chemistry students.

Reaction Rates

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo