Or search by topic
Imagine that you have a pair of vectors ${\bf F}$ and ${\bf Z}$
$$
{\bf F}=\pmatrix{1\cr 1 \cr 0}\quad {\bf Z}=\pmatrix{0\cr 1 \cr 1}
$$
Can you construct an example of a matrix ${\bf M}$, other than the identity matrix, which leaves ${\bf F}$ fixed, in that ${\bf M}{\bf F}={\bf F}$? How many such matrices can you find? Which is the simplest? Which is the most complicated?
Can you construct an example of a matrix ${\bf N}$, other than the zero matrix, which crushes ${\bf Z}$ to the zero vector ${\bf 0}$, in that ${\bf N}{\bf Z}={\bf 0}$? How many such matrices can you find? Which is the simplest? Which is the most complicated?
Can you find a matrix which leaves ${\bf F}$ fixed and also crushes ${\bf Z}$?
Can you find any (many?) vectors fixed or crushed by the following matrices? Give examples or convincing arguments if no such vectors exist.
$$
{\bf M} = \begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}, \: \begin{pmatrix} 1&2&3\\ 2&3&4\\ 3&4&5\\ \end{pmatrix}, \: \begin{pmatrix} \phantom{-}1&-2&\phantom{-}1\\ \phantom{-}1&\phantom{-}1&\phantom{-}0\\ -2&\phantom{-}1&-2\\ \end{pmatrix}
$$
You might find this Matrix Multiplication calculator helpful for testing out your ideas.
There are more matrix problems in this feature.
A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?
This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.
This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?