Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Farey Neighbours

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Why do this problem?

The problem provides purposeful practice on inequalities and leads to a proof using mathematical induction.
It also builds on the problems Farey Sequences and Mediant Madness, and provides a foundation for the beautiful and surprising result in Ford Circles.

Possible approach

For a geometrical approach to proving that $\frac{b}{d} < \frac{a+b}{c+d} < \frac{a}{c}$, you may wish to start with Mediant Madness. 

To prove algebraically that $\frac{a+b}{c+d} < \frac{a}{c}$, given that $\frac bd < \frac ac$, you may need to offer the hint to rearrange to get $bc < ad$, and add $ac$ to both sides of the inequality. 

Next, invite students to use Mediants to quickly calculate the first few Farey Sequences, and calculate $ad-bc$ for a few pairs of Farey Neighbours.

Once they establish that $ad-bc=1$ for the examples they try, invite them to construct a proof by induction to show that it holds for all Farey Neighbours.

Key questions

What are we trying to show?
Is there anything we can do to both sides of the inequality we have, to get us to the inequality we want?
If two fractions are Farey Neighbours in $F_n$, will they still be Farey Neighbours in $F_{n+1}$?
If they are not Farey Neighbours in $F_{n+1}$, what will the new fraction between them be?

Possible extension

After working on this problem, students could explore Ford Circles.


Possible support

Farey Sequences and Mediant Madness can be used to ease students into the exploration of the ideas in this problem.

This article on Mathematical Induction may also be useful.

You may also like

Shades of Fermat's Last Theorem

The familiar Pythagorean 3-4-5 triple gives one solution to (x-1)^n + x^n = (x+1)^n so what about other solutions for x an integer and n= 2, 3, 4 or 5?

Exhaustion

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

Code to Zero

Find all 3 digit numbers such that by adding the first digit, the square of the second and the cube of the third you get the original number, for example 1 + 3^2 + 5^3 = 135.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo