Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sweeping Satellite

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

All satellites moving under the gravitational attraction of a single body travel in the path of an ellipse, where the body being orbited is at one focus of the ellipse. This is a consequence of the attractive force being inversely proportional to the square of the distance. For example the Moon's orbit around Earth is close to circlular, but Mars' orbit around the Sun is quite a bit more elliptical.

Moment of momentum (sometimes called angular momentum) $H = mvr\sin(\theta)$, where $m$, $v$, $r$, and $\theta$ are the mass, velocity, radius from the axis of rotation, and angle between the radius and the velocity, of the satellite. When $dH/dt = 0$, clearly $H$ is not changing, so we can say it is "conserved". $dH/dt = Fr\sin(\theta)$, i.e. moment (where $\theta$ is the angle between the radius and the force). So when there is no moment about the axis of rotation, which is always the case for a satellite since the gravitational force is parallel to the radius, moment of momentum is conserved. When a satellite is at the nearest point of its orbit ("perigee"), and the furthest point ("apogee"), the direction of motion and the radius are perpendicular, so $\theta = 90^{\circ}$, so we can say that $mr_pv_p = mr_av_a$ where subscript $a$ denotes apogee, and subscript $p$ denotes perigee.

The sum of kinetic and potential Energy can also be assumed to be conserved for a satellite. This being the case, show that for those two positions, $v_av_p(r_a + r_p) = 2gR^2$, where $R$ and $g$ are the radius and gravitational field strength at the surface of the body being orbited.

 

You may also like

Absurdity Again

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Old Nuts

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Just Touching

Three semi-circles have a common diameter, each touches the other two and two lie inside the biggest one. What is the radius of the circle that touches all three semi-circles?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo