Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Keep Your Momentum Going

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

You may have learned Newton's 2nd law of motion, "force is equal to the rate of change of momentum". In fluids, the rate of change of mass, $dm/dt$, often abbreviated $\dot{m}$, is important. Use the product rule to find the form of Newton 2 that includes the possibility of mass flow.

If the flow is "steady", i.e. the mass flow in to a certain volume equals the mass flow out, the formula you derived simplifies to $F = \dot{m}v$.

When we resolve this formula in any particular direction, we call it the "steady flow momentum equation".

A tank (pictured) has a chemical (density $800kg/m^3$) flow of 1kg/s going through from left to right. The inlet pipe has an area $100cm^2$, and the outlet pipe has an area $50cm^2$. If the inlet pressure is 1MPa, what is the output pressure? Hint: mass is conserved, and the mass flow in a pipe of area A with fluid velocity V is just $\dot{m} = \rho AV$.

A supported fluid tank with an inlet and an outlet

Can you see any structural problems that might arise with this tank?

Would it make a significant difference if the tank were aligned vertically or horizontally?
 

You may also like

Mach Attack

Have you got the Mach knack? Discover the mathematics behind exceeding the sound barrier.

Moving Stonehenge

A look at the fluid mechanics questions that are raised by the Stonehenge 'bluestones'.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo