Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Symmetric Angles

Age 14 to 16
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions
 As the figure has rotational symmetry of order $4$, $ABEF$ is a square.


Area $ABEF=4\times$area$\triangle BDA=4\times \frac{1}{2}BD \times DA=2(DB)^2=24$cm$^2$, so $BD=\sqrt{12}$cm$=2\sqrt{3}$cm.

As $ABEF$ is a square, $\angle ABD=45^{\circ}$ so $\angle CBD=45^{\circ} -15^{\circ} =30^{\circ}$.

Since $\tan {30^{\circ}}= \frac{CD}{BD}=\frac{CD}{2\sqrt{3}}$, we have $CD=2\sqrt{3}\tan{30^{\circ}}$cm.

Now consider the following equilateral triangle with side lengths $2$:

The vertical line is perpendicular to the base-line and so bisects both the angle at the top vertex and the base-line.

Consider the left right-angled triangle. Pythagoras' theorem gives $a=\sqrt{3}$ and then we have $\tan{30^{\circ}}=\frac{1}{a}=\frac{1}{\sqrt{3}}$

Therefore $CD=2\sqrt{3}\tan{30^{\circ}}$cm$=2$cm.

This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Compare Areas

Which has the greatest area, a circle or a square, inscribed in an isosceles right angle triangle?

Take a Square

Cut off three right angled isosceles triangles to produce a pentagon. With two lines, cut the pentagon into three parts which can be rearranged into another square.

Semi-detached

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo