Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

28 - Upward and Onward

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

We had some lovely ideas sent in. It would have been good to be there when they were created and to know how you got your solutions. Here are just a few. I was interested in both Alexander's and George's good descriptions in words to say what they created.

 

Alexander wrote:


I used $9$ bricks. I put $8$ of them together in a $3$ by $3$ square with the middle one missing. I then put the $9$th brick on the middle brick of one of the rows. So I had one brick with $5$ faces showing, $7$ bricks with $3$ faces showing and $1$ brick with $2$ faces showing.

 

 

and George wrote;

I used $11$ bricks. I had $1$ row of $3$ bricks joined to a row of $4$ bricks and the $4$ brick row was joined to another row of $3$ bricks. On one of the rows of $3$ bricks I put the $11$th brick at the end on top.

 

 

 

 

Ewan, Fraser, Jenny Lee and Ayan had a good idea of only counting the faces you could see, so they sent in this picture;

 

 

 

 

ewan etc.

 

 

 

Kristy and Amy used the computer and sent in;

 

 

 

Amy

 

 

 

Zain sent in two ideas, one of which is;

 

 

 

Zain

 

 

 

 

Finally Lily and Alex sent in:

 

 

 

Lily

 

 

 

Well done everyone! I'm sure that many more of you who did not send in solutions came up with some interesting ideas and if your class/group did not have a go try it now!

 

 

You may also like

Construct-o-straws

Make a cube out of straws and have a go at this practical challenge.

Matchsticks

Reasoning about the number of matches needed to build squares that share their sides.

Little Boxes

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo