Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Square Pair

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Submit a Solution
  • Teachers' Resources

 

Why do this problem?

This problem builds students' understanding of matrix transformations in two dimensions and encourages exploration which will increase confidence at working with vectors and matrices. Insight gained from geometrical approaches leads to a better understanding of matrix algebra.

 

Possible approach

Students could explore this problem by choosing a variety of different matrices and plotting the points which $(0,0), (0,1), (1,0)$ and $(1,1)$ are transformed to. Once they have built up a picture of how the square $S$ is transformed, they could be challenged to find matrices which would transform $S$ into a particular type of quadrilateral, and then to justify why some types of quadrilateral cannot be made by transforming $S$. Students may start by justifying these conjectures using their geometrical insights, but they should be encouraged to support this using appropriate matrix algebra.

 

The second part of the problem asks students to investigate transformations of a second square; this could be done in the same way, first by trying some numerical examples by choosing suitable matrices, then generalising from what they find and supporting their generalisations algebraically.

 

Students might like to use this Matrix Transformation tool to help them investigate the problem.    In this tool the four corners of a quadrilateral are given as a $2 \times 4$ matrix, where the coordinates appear as the columns of the matrix, in clockwise (or anticlockwise) order.

 

Key questions

What can you say about the image of the points on a line after transformation by a matrix?

What can you say about the image of a pair of parallel lines after transformation by a matrix?

 

Possible extension

Transformations for 10 offers a variety of challenging questions about the effects of matrices in two and three dimensions, with an emphasis on thinking geometrically.

 
There are more matrix problems in this feature. 

 

Possible support

Begin with lots of examples of transforming the points $(0,0), (0,1), (1,0), (1,1)$ by multiplying by different matrices. Plot the resulting four points each time, and share ideas about what is common to all the images.

 
The problem Flipping Twisty Matrices starts by considering some specific matrices and seeing what affect these have.

 

 

 

You may also like

8 Methods for Three by One

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

Rots and Refs

Follow hints using a little coordinate geometry, plane geometry and trig to see how matrices are used to work on transformations of the plane.

Reflect Again

Follow hints to investigate the matrix which gives a reflection of the plane in the line y=tanx. Show that the combination of two reflections in intersecting lines is a rotation.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo