Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Two Much

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions

Rosie Johns, Y8, Davison High School, Worthing and Tufan Kà ½zà ½ là ½rmak, IRMAK Primary and Secondary School, à stanbul, Turkey sent really good solutions to this problem. Rosie explained that the terms are all of the form 13N + 1, where N is a whole number, and that the terms of the sequence containing all 2's are based on 222,222,000 + 222. Rosie found you get numbers in the sequence with the digit 2 repeated 3 times, 9 times, 15 times, 21 times and so on.

Explaining a slightly different way of writing down the same method, Tufan says:

"I am a member of the Math Club of my school. Now I am sending the answer to Two Much (The February Six Problems). I noticed the difference of the terms of the sequence is 13. Each term is equivalent to 1 (modulo 13) , so that

1=1 (mod 13)

14 = 13 + 1 = 1 (mod 13)

27 = 2*13 + 1 = 1 (mod13)

40 = 3*13 + 1 = 1 (mod 13) and so on.

The other terms must be equivalent to 1 modulo 13. Now let's search the terms which contain twos; for example when 222 is divided by 13 the quotient is 17 and the remainder is 1. I made a table according to modulo 13:

Terms

Quotient

Remainder

222

17

1

2222

170

12

22222

1709

5

222222

17094

2222222

170940

2

22222222

1709401

9

222222222

17094017

1


When the last term of the quotient is 7 then the remainder is always 1. The number of the terms etween two sevens is 6. It means the number of the terms which contains twos will increase six by six. The terms which contain twos appear increasing six digits, so that the terms of the sequence which contain twos must be

222,
222 222 222,
222 222 222 222 222,
222 222 222 222 222 222 222,..........going on."

This happens because, as Rosie and Tufan have shown, 222 = 13*17 + 1 so it belongs to the sequence. We use the fact that 222 222 is a multiple of 13 and add 222 222 times a thousand to 222 to get another 'all twos' number in the sequence. To get further 'all twos' numbers we just keep multiplying 222 222 by another million and adding it to the last 'all twos' number so six more twos appear in the successive terms.


You may also like

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Differences

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Where Can We Visit?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo