Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Derren Brown Coin Flipping Scam

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


The illusionist Derren Brown famously flipped a coin continuously on camera until he obtained 10 heads in a row. He then simply showed the last 10 flips of the film on TV, claiming that he influenced the outcome of each flip to get 10 heads first time.

Lots of ideas concerning risk and probability enter into this scam, and it is great for discussion. Why not consider these short questions as starting points? You will need to quantify carefully any aspects which seem vague or unclear.

1. What was the chance of DB completing the coin scam on the first attempt?
 
2. How many flips would you expect DB to have made before making 10 consecutive heads?
 
3. I've tried to repeat the DB coin experiment and have flipped my coin 5000 times with no run of 10 heads and just got another tail. How many more flips do I expect to need to make to make 10 consecutive heads?
 
4. My friend wants to replicate the coin flipping scam. How much time should she put aside to be reasonably confident of completing the challenge?
 
5. I've been flipping coins all day without success. I've just got a tail and there is 10 minutes of the school day left. If I make 1 flip per second, what chance have I got of achieving the 10 consecutive Heads before the end of the day?
 
6. My friend in the Technology department has worked out a way of slightly doctoring the coin to give a 55% chance of heads on each throw instead of 50%. How helpful will this small change in probabilities be to our chances of success?
 
7. What physical effects might bias the results or affect the outcome?
 
8. DB took about 10 hours to get the 10 heads in succession, which was longer than might be expected. How unlucky was he to have taken this long? Very unlucky? Quite unlucky? How might you quantify this statement?
 
9. Suppose that everyone in Britain flipped a coin until they obtained 10 consecutive heads. What range would you estimate the shortest number of flips to be in? How about for the longest number of flips?
 
10. Imagine that someone wanted to try to replicate this stunt, only this time stopping with a greater number of consecutive heads. For what number of consecutive heads would this be practically feasible?







 

You may also like

Game of PIG - Sixes

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

The Mean Game

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

Very Old Man

Is the age of this very old man statistically believable?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo