Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Napkin

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem


This problem offers a simple context which can generate lots of questions. Inviting learners to make conjectures and form convincing arguments. Demonstrating the similarity of triangles is relatively straight forward and calculating lengths offers opportunities for links with Pythagoras' theorem and ratios, bringing together important geometrical concepts.

Possible approach


Time to engage in, and become familiar with, the context is important. Early on, encourage learners to list and share what they notice, using large squares of paper on a display board can encourage discussion of key features and ideas and conjectures which they might explore.

Identify questions about the triangles that learners will work on.

As learners work this document may help them discuss possibilities and focus on some possible approaches.

It is likely that learners will arrive at results in different ways. These journeys and findings form opportunities to share and discuss good and elegant solutions and different ways of "seeing".
 

Key questions

  • What do you think might be true?
  • What do you know?
  • What do you need to know?
  • What mathematical ideas and techniques might be of use in order to answer that question?
     

Possible support
 

Making Sixty is a similar context involving a similar fold but with more accessible results. It also has the potential to lead to some practical mathematics.

 

Possible extension

If the square paper napkin is folded so that the corner P does not coincide with the midpoint of an opposite edge, where would you place the fold for a 5, 12, 13 or an 8, 15, 17  or a 7, 24, 25 triangle?

Are any of these findings extendable to other quadrilaterals?

 

You may also like

Fitting In

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ

Look Before You Leap

Can you spot a cunning way to work out the missing length?

Triangle Midpoints

You are only given the three midpoints of the sides of a triangle. How can you construct the original triangle?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo