Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Painting by Numbers

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Teachers' Resources

With painting by numbers, a line drawing is split into regions which are to be painted according to the rules that:

1) No two regions of the same colour can share a border

2) Two regions of the same colour are allowed to meet at a point.

Consider these two images, one made from intersecting ellipses and one made from overlapping rectangles (include the outer square boundaries in the image)

      


Part 1

What is the smallest number of colours needed to colour these pictures according to the colouring rules? Prove your result clearly.

Consider the more general question of colouring other pictures created from intersecting ellipses or overlapping squares. Can you form any well-considered conjectures, prove any results or find any interesting examples?


Part 2

Imagine that painting by numbers pictures are draw on a sheet of rubber which can be distorted - stretched or shrunk at any point. How many 'topologically different' sorts of pictures would there be with two, three or four regions? How could these be painted according to the rules?

Extension: Try the Torus Patterns problem.



NOTES AND BACKGROUND

The issues raised in this problem concern a famous mathematical theorem the proof of which was surrounded by difficulty and controversy. You can read about this in our fascinating mathematical history article 'The Four Colour Theorem'. The issues raised by the theorem are accessible at school level, but full understanding takes you right up to university level pure mathematics.

Mathematics and art are in many ways closely related. You can read more about the mathematics of art on the Plus website pages

Art + Math = x by Carla Farsi with Marianne Freiberger

Teacher package: Maths and art contains many fascinating links and articles



 




You may also like

Where Do We Get Our Feet Wet?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Links and Knots

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots, prime knots, crossing numbers and knot arithmetic.

Earth Shapes

What if the Earth's shape was a cube or a cone or a pyramid or a saddle ... See some curious worlds here.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo