Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Agile Algebra

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Equations can be difficult to solve by direct attack but if you look for symmetric features and make substitutions they might become much easier to solve.

Consider the equation:$$(x+5)^2+(x+3)^2=6$$

Expand the brackets and solve the resulting quadratic equation, leaving your answers in exact form

The algebra here can get a little messy.  Perhaps we can use a substitution to turn the equation into an easier one. 

Use the substitution $y=x+4$ to rewrite the equation in terms of $y$.
Why do you think that we have suggested using $y=x+4$?  How does this substitution relate to the original equation?


If $y=x+4$ then $x+5=y+1$ and $x+3=y-1$. This means that we can write the original equation as $(y+1)^2+(y-1)^2=6$.
 

Expand your brackets and solve for $y$, and then for $x$.

Which method was easiest?

 

Try using substitutions to simplify and then solve these equations:

1.  $(x + 3)^4 + (x + 5) ^4 = 34$

2.  $(x-1)(x-3)(x-5)(x-7)+15=0$

3.  $(x-4)(x-5)(x-6)(x-7)=1680$


The "median" of these brackets is equal to $x-5\frac 1 2$, so try using a substitution of $t=x-5\frac 1 2$. You might find that a further substitution is helpful.
 

 

Now lets consider a different equation: $$x^4-8x^3 + 17x^2-8x+1=0$$

There is symmetry in the coefficients of the equation.  Dividing by $x^2$ gives: $$x^2 -8x+17 -\dfrac 8 x +\dfrac 1{x^2}=0$$

Consider a substitution of $z=x+\dfrac 1 x$.  What will $z^2$ be?


If $z=x+\dfrac 1 x$ then $z^2=\left(x+\dfrac {1} {x}\right)^2=x^2 + 2 + \dfrac 1 {x^2}$
 

Can you write $x^2 -8x+17 -\dfrac 8 x +\dfrac 1{x^2}=0$ in terms of $z$ and $z^2$?


You can rearrange the terms to get $x^2 +17 +\dfrac 1{x^2} - 8x - \dfrac 8 x=0$.
 

You should find that you have a quadratic in $z$ which you can solve to get two solutions.  For each solutions for $z$, substitute it into $z=x+\dfrac 1 x$ and solve for $x$.

Try using substitutions to simplify and then solve these equations:

4.  $x^4-2x^3 -6x^2-2x+1=0$

5.  $x^4-2x^3+2x^2-2x+1=0$

 

Extension

Try using a substitution to help solve this equation.  There is a hint available!

$$(8x+7)^2(4x+3)(x+1)=\frac{9}{2}$$


You can multiply the $(4x+3)$ bracket by $2$ and the $(x+1)$ bracket by $8$ - this will mean that the left hand side of the equation has multiplied by $16$, so do the same to the right hand side!
 



NOTES AND BACKGROUND
This is an example of a process which occurs frequently in mathematics. Let's refer to two frames of reference as A and B and say we have a problem stated in A, then the technique is to map the given relationships to B, work in B and then map the results back to A. All these equations have symmetry of one sort or another. By using the symmetry to make a substitution you can change the variable and get an equation which is easier to solve. After that you have to use the solutions you have found and go back to find the corresponding solutions of the original equation.

To find out more about this general technique see the article "The Why and How of Substitution".   

 

 

 

 

 

You may also like

Cubic Spin

Prove that the graph of f(x) = x^3 - 6x^2 +9x +1 has rotational symmetry. Do graphs of all cubics have rotational symmetry?

Sine Problem

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

Parabolic Patterns

The illustration shows the graphs of fifteen functions. Two of them have equations y=x^2 and y=-(x-4)^2. Find the equations of all the other graphs.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo