Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Sign of the Times

Age 16 to 18
ShortChallenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Solutions
This problem is good for 'simmering' in the background. If you can't make sense of it at first, try leaving it and coming back to it later.

My friend has sketched a non-constant curve $f(x)$ which passes through the origin. She knows that its derivative exists at all points. Is it possible that $f(x)$ could satisfy
$$
f(x)\times\frac{df(x)}{dx} \leq 0
$$ for all $x$?
 
I'll need a very clear explanation to convince me!
 
My other friend has sketched a curve whose derivative exists at all points, but his does not pass through the origin. Is it possible that the same condition might hold?

Did you know ... ?

Problems in calculus can often be considered from either an algebraic or geometric viewpoint and calculus is fundamental in the advanced study of geometry as well as areas of theoretical physics, such as string theory and relativity. 

You may also like

A Close Match

Can you massage the parameters of these curves to make them match as closely as possible?

Prime Counter

A short challenge concerning prime numbers.

The Right Volume

Can you rotate a curve to make a volume of 1?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo