Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

More Secret Transmissions

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Teachers' Resources

This problem follows on from Secret Transmissions, so if you haven't had a go at it yet, you should try it first.

In the problem Secret Transmissions, you were invited to explore a system for detecting and correcting errors in transmissions.

Imagine you now had to send five 'bits' (0 or 1) of information, instead of just four. Can you devise a system of error detection and correction that will allow your message to be corrected if there is at most one error in transmission?

How many check digits would you need?

What if you had more than five 'bits'? Can your method be generalised?

If you were sending an n-bit message, how many check digits would you need?

Extension:

Suppose there were two errors in transmission. Can you find an error detection system that would alert you to this, and enable you to correct the message?

Very challenging extension

Suppose each digit of the message might be 'flipped' (a 0 switched to a 1 or vice versa) with probability p=0.1. Explore the likelihood of messages appearing to be transmitted correctly but actually arriving with errors that can't be detected. Can you devise a system where the correct message could be retrieved 99.99% of the time?

You may also like

Probably a Code?

Is the regularity shown in this encoded message noise or structure?

Stage 5 Cipher Challenge

Can you crack these very difficult challenge ciphers? How might you systematise the cracking of unknown ciphers?

A Roman Conversion?

First cipher

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo