Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Population Ecology Using Probability

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions

Branching Processes

Branching processes, or tree graphs, model the growth and eventual size of a population. If we know the probabilities of the number of offpsring produced at each generation, then we can determine the probability of ultimate extinction, or the eventual population size.

Probability Generating Functions

Consider a variable X, where $P(X=0)=p_0,   P(X=1)=p_1,   ...$

This is an integer valued variable with its mass function as a sequence.  We set two conditions:

  1.  All probabilities need to be positive  $ p_k \geq 0 $
  2. Only one event can and must occur, so $p_0+p_1+...=\displaystyle\sum\limits_{k=0}^{\infty} p_k =1$

 

The probability generating function G, is an ordinary function in terms of s: $$G_X(s)=p_0+p_1 s+p_2 s^2+...$$ Question:    What is the value of G(s) when $s=0$? And when $s=1$?

 

Example:    Consider a random variable Y with the geometric distribution with parameter p. 

Then $P(Y=k)=p(1-p)^{k-1}=pq^{k-1}$ for $k=0,1,...$.  

So Y has PGF given by:  $$\begin{align*} G_Y(s) & = \displaystyle \sum_{k=1}^{\infty} p q^{k-1} s^k \\ &= ps \displaystyle \sum_{k=0}^{\infty} (qs)^k \\  &= \frac {ps}{1-qs} \end{align*}$$

Expectation

We can relate the PGF to the mean, or expectation. Recall that: $$E(X)=\bar x = \displaystyle \sum_{all  x}^{ } xP(X=x)$$We can extend this definition to not just a variable, but to a function of a variable:  $$E(g(X))=\bar{g}(x) = \displaystyle \sum_{all  x}^{ } g(x) P(X=x)$$This definition reminds us of our PGF polynomial, with the important result: $$ G_X(s)=p_0+p_1 s+p_2 s^2+...=E(s^X)$$

 

Random Sums Formula

Consider a population of meerkats, where each individual has a random number of offspring in the next generation. Using this information, we can determine the total expected number of offspring in future generations.

First let $N, X_1, X_2, ...$ be independent variables, with $X_1, X_2, ...$ all having the same probability generating function G.  Think of these X as the individual meerkats in our population. This also means that our PGF is given by $G(s)=p_0+p_1s+p_2s^2+...$, where $p_0=P(\text{no offspring}),   p_1=P(\text{one offspring}) ,  ...$

 

We are interested in finding the PGF of the sum   $X_1+X_2+...+X_N$ $$\begin{align*} G_T(s) & = E[s^T] \\ &= \displaystyle \sum_{n=o}^{\infty} E\Big [s^T|N=n\Big ] P(N=n) \\ & = \displaystyle \sum_{n=o}^{\infty} G(s)^n P(N=n) \\ & = E[G(s)^n] \\ &= G_N \Big( G(s) \Big) \end{align*} $$Example:    Elephants (in most cases) only have one offspring at a time, with probability p, say. We can model the number of offspring using the Bernoulli distribution with parameter p.

Generation n+1 consists of the offspring of generation n.

Let $Z_{n+1}= \displaystyle \sum_{j=1}^{Z_n} X_j$ ,  where $X_j$ is the number of offspring of the jth individual in generation n.

 

In the first generation:    $G_{Z_1} (s)=G_X(s)=(1-p)+ps$

In the second generation:     $G_{Z_2} (s)=G_{Z_1} \bigg(G_X (s) \bigg)=(1-p)+p\big((1-p)+ps\big)=(1-p^2)+p^2 s$

Continuing, we see that at the nth generation:     $G_{Z_n} (s)=(1-p^n)+p^n s$

 

Now click here to find out about branching processes and how we can use probability to determine the likelihood of a population becoming extinct.

Related Collections

  • More Population Dynamics

You may also like

Ball Bearings

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

Cushion Ball

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo