Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Speed-time Problems at the Olympics

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Speed-Time Problems at the Olympics printable worksheet
 

At the 2012 Olympic games, the qualifying standards for the women's 100 metres race was 11.29s. How does this compare with the speed of a bus?

At the 2012 Olympics Shelly-Ann Fraser-Pryce won the women's 100m in a time of 10.75s. If she had continued running, how much further would she have run by the time an athlete running at the qualifying speed (11.29s) would have crossed the line?

In the 2009 IAAF World championship, Usain Bolt ran the 100m in 9.58s. Estimate how far he would have been ahead of the gold medallist from Lane 2 had they been racing together.

Imagine that you raced in the 200m with Usain Bolt. By what length would he beat you?

Imagine that a 2km rowing race took place on a rowing lake with two separate legs of 1km. How would the total race time vary from a race on a river where one leg is upstream and the other downstream?

Imagine that cyclist A completes a lap following the blue line on the velodrome track. Cyclist B completes a lap 1m inside the blue line and cyclist C completes a lap 2m outside the blue line. How do the distances travelled vary between the cyclists?

In the past, the start of a 100m race was indicated by a pistol shot next to lane 1. Did this give a significant advantage to the runner in lane 1? Would it have given a significant advantage to anyone if this pistol was fired from the end of lane 4?

Imagine an announcement is made from a podium in the centre of a stadium. As the speaker talks into her microphone the sound is simultaneously sent to speakers which project the sound into the stadium and up to satellites which transmit the signal as digital radio. Who might hear the sound first: someone listening on the radio or someone listening in the stadium?



Note: In this problem you might not have been given all of the required data and you might need to make estimates or approximations. You should be clear in your mind as to any assumptions that you make whilst constructing your answers.


 

Related Collections

You may also like

On the Road

Four vehicles travelled on a road. What can you deduce from the times that they met?

Pentagonal

Can you prove that the sum of the distances of any point inside a square from its sides is always equal (half the perimeter)? Can you prove it to be true for a rectangle or a hexagon?

A Scale for the Solar System

The Earth is further from the Sun than Venus, but how much further? Twice as far? Ten times?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo