Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Speed-time Problems at the Olympics

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This task provides an engaging context for students to explore speed, distance and time problems. Some of the questions require students to make assumptions or find out extra information.

Possible approach

These resources may be useful: Speed-Time Problems at the Olympics,

                                                            Speed-Time Problems at the Olympics.

Here are some ways the questions in this problem could be used:
 
  1. Display one question at the start of a lesson, give students some time to work out their response, and then discuss as a class different ideas and methods.
     
  2. Give all eight questions out and invite students to work on them in pairs or small groups before bringing the class together to share their answers and debate any disagreements.
     
  3. Give out different questions to different pairs and then invite each pair to present their answer, with the rest of the class acting as critical friends insisting on clear reasoning.

There may be opportunities for cross-curricular links with P.E. where students may have collected their own data about their best times for 100 and 200m. It may be appropriate to adapt some of these questions and use students' own times.

It is important to be aware throughout that these questions are (deliberately!) not as 'precisely' stated as typical textbook questions. For example, the phrase 'If she had continued running ...' from lane 2 requires an assumption to be made before computation of an answer. There is no absolutely 'right' way to make these assumptions, although assumptions need to be made clearly. You might need to encourage or reassure the class that they are 'allowed' to make their own sensible assumptions on which to base their calculations if they are unused to working in this way. You might find that rich mathematical discussion emerges from the discussion of the modelling assumptions made on certain parts of the question.

Key questions

What assumptions do you need to make?
Is there any extra information you need to know?

Possible support

 
We assume students will use calculators when working on these questions. Inviting students to work together will allow them to support each other. Some of the questions could be worked on as a whole class and solution methods could be modelled on the board. The first four questions are similar in nature, and easier than the last four.
 
Place Your Orders might provide a suitable introductory activity.

Possible extension

The challenging task Speedo invites students to think about questions of speed, distance and time where acceleration plays a part.

 

 

Related Collections

You may also like

On the Road

Four vehicles travelled on a road. What can you deduce from the times that they met?

Pentagonal

Can you prove that the sum of the distances of any point inside a square from its sides is always equal (half the perimeter)? Can you prove it to be true for a rectangle or a hexagon?

A Scale for the Solar System

The Earth is further from the Sun than Venus, but how much further? Twice as far? Ten times?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo