Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Fit for Photocopying

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Student Solutions
  • Teachers' Resources

Why do this problem?

Most students will be familiar with the $A$ paper sizes but they may be unaware of their special properties. This problem explores ratio and scaling, with the possibility of working with surds and indices if students choose to tackle the extension questions.

 

Possible approach

Take a sheet of $A4$ paper, hold it up to show the class.
"Here is a sheet of $A4$ paper." 

Fold it in half so that it is $A5$ size.
"Does anyone know what size this paper is?"
"$A5$"
"What special relationships can you think of between $A4$ and $A5$ paper?"
 "The area is half"
"The long side on the $A5$ is the same as the short side on the $A4$"
"They are similar shapes"
 
If similarity doesn't emerge as a suggestion from the class, use the example of a photocopier - something printed on $A4$ paper can be enlarged to fit onto $A3$ without distortion, so they must be similar rectangles.

Set the students the challenge of working out the ratio of the shorter to the longer side of a sheet of A paper. This diagram may be useful:
   
If students are having difficulty knowing where to start, suggest that they label the two shortest lengths in the diagram $x$ and $y$, and then work out the other lengths.

Once they have established that the sides are in the ratio $1:\sqrt2$, reveal that a sheet of A0 paper has an area of one square meter, and invite them to calculate the dimensions of the different paper in the A family. 

 

 

Possible support

Growing Rectangles explores length and area scale factors and might be appropriate for some students to work on before attempting this task.

Possible extension

Invite students to come up with a consistent definition for fractional or negative paper sizes.

 

 

 

 


 

 

You may also like

Matter of Scale

Can you prove Pythagoras' Theorem using enlargements and scale factors?

Conical Bottle

A right circular cone is filled with liquid to a depth of half its vertical height. The cone is inverted. How high up the vertical height of the cone will the liquid rise?

Squirty

Using a ruler, pencil and compasses only, it is possible to construct a square inside any triangle so that all four vertices touch the sides of the triangle.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo