Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

More Dicey Decisions

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources
In the problem Dicey Decisions, we encouraged you to consider the possible edge totals by adding up the numbers that meet on the different edges of a six-sided die.
If you haven't already done this, why not try now?
 
Imagine that instead of a six-sided die we had a dodecahedron numbered 1-12.
There are different ways to arrange the numbers from 1-12. A standard six-sided die has opposite faces that sum to 7, so perhaps our dodecahedral die should have opposite faces that sum to 13.
 
Can you create a net for a dodecahedral die whose opposite faces sum to 13?
 
For the six-sided die, the edge totals were distributed like this:
Edge total  3   4   5   6   7   8   9   10  11
Frequency 1 1 2 2 0 2 2 1 1

The mean edge total is 7, and the edge totals are distributed symmetrically about the mean.
 
What is the mean edge total for your dodecahedral die?
Are the edge totals distributed symmetrically?
 
Ignoring rotations and reflections, there is only one way to number a cube to create a six-sided die with the constraint that opposite faces sum to 7, but there are multiple ways to create a dodecahedral die with opposite faces that sum to 13.
 
Can you make any general statements about which dodecahedral dice will have edge totals with a symmetric distribution? Can you prove your statements?
 
For the six-sided die, the corner totals were also distributed symmetrically. Will the same be true for the corner totals of a dodecahedral die?
 
Now use your insights to make and justify some statements about the edge and corner totals of an icosahedral (20-sided) die with opposite faces that sum to 21.
 

You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

OK! Now Prove It

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo