Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

What Numbers Can We Make?

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem offers students the opportunity to consider the underlying structure behind multiples and remainders, as well as leading to some very nice generalisations and justifications.
 

Possible approach

Display the image of the four bags (available as a PowerPoint slide).
Alternatively, you could start with this image, with 7s, 10s, 13s and 16s.

 

"Here are some bags containing lots of $1$s, $4$s, $7$s and $10$s. I'd like you to choose any three numbers from the bags and add them together."
Clarify that they can reuse numbers if they like, then collect some of their answers on the board.
 
"What do you notice?"  "They're all multiples of three".
"Try to find three numbers from the bags that don't add up to a multiple of three. If you can't do it, see if you can come up with an explanation of why it's not possible."
 
Give students some time to work in pairs. While they are working, circulate and listen to their ideas. Then bring the class together to share insights.
 
If the class have not developed a useful representation of their own, you could introduce Charlie's and/or Alison's representation from the problem.
 
"Next, I'd like you to explore what happens if you select four numbers from the bag, or five, or six, or... In a while I'm going to pick a large number at random. Your challenge will be to tell me what is special about the total if I selected that many numbers from the set of bags."
 
Give students time to work in pairs on the task. Then bring the class together and choose a large number such as $99$ or $100$: "What would be special about the total if I added $99$ numbers chosen from the bags?" Make sure students explain their reasoning with reference to the structure of the problem rather than just by spotting a pattern.
 

Key questions

 

What's the smallest number I can make?
What's the next smallest?
What is special about the numbers that make up each set of bags?
 

Possible support

Begin by asking students to explore what happens when they add two, three, four... numbers chosen from a set of bags containing $2$s, $4$s, $6$s and $8$s. Can they explain their findings?

 

Possible extension

Take Three from Five and What Numbers Can We Make Now? are suitable follow-up problems.

 


 
 

Related Collections

  • From Particular to General

You may also like

Calendar Capers

Choose any three by three square of dates on a calendar page...

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo