Or search by topic
This problem offers students the opportunity to consider the underlying structure behind multiples and remainders, as well as leading to some very nice generalisations and justifications.
Display the image of the four bags (available as a PowerPoint slide).
Alternatively, you could start with this image, with 7s, 10s, 13s and 16s.
Begin by asking students to explore what happens when they add two, three, four... numbers chosen from a set of bags containing $2$s, $4$s, $6$s and $8$s. Can they explain their findings?
Take Three from Five and What Numbers Can We Make Now? are suitable follow-up problems.
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!
15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?