Or search by topic
Vector Journeys printable sheet
Charlie likes to go for walks around a square park.
Here is a diagram of the journey he took one day:
He started his journey by walking along the black vector $\pmatrix{3\cr 1}$
What vectors did he need to walk along to complete his journey?
Draw some other square parks that Charlie could walk around, and find the vectors that would describe his journey.
Can you describe and explain any relationships between the vectors that determine Charlie's journey around any square park?
Once you know the first vector of a journey, can you work out what the second, third and fourth vectors will be? Is there more than one possibility?
Alison likes to walk across parks diagonally.
One day, she walked along the blue vector $\pmatrix{2\cr 4}$:
Can you explain and justify your findings?
A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?
This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.
This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?