Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cylinder Cutting

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Teachers' Resources

 We start off with this tube (like one from inside a roll of kitchen paper):

 tube

The tube has a seam running through it (that forms a helix) .You'll have to carefully cut along that seam and then open it out and flatten it a little.
Now you will notice a parallelogram. It will very easily return to the original cylinder shape, BUT we can produce another cylinder by putting the two shorter edges together. 
Then you have a cylinder that looks more like this:

 squat

You are now encouraged to consider taking an $A4$ sheet of paper and cutting it at an angle, in such a way that you can roll it up to produce a similar cylinder (like the kitchen roll one). You then repeat the same cutting as above and create the second cylinder by rolling it up differently.
 
Examine the lengths and volumes of these two cylinders and the areas of the paper pieces.
 
Try many different examples by cutting differently.
 
Is there a way of cutting the $A4$ sheet to produce a shape in which both cylinders have the same volume?

Explore further the shaped pieces you've produced.


You may also like

Sponge Sections

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Which Solid?

This task develops spatial reasoning skills. By framing and asking questions a member of the team has to find out what mathematical object they have chosen.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo