Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Non-transitive Dice

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem offers a good opportunity to introduce or practise using sample space diagrams or tree diagrams. Transitivity is such a common phenomenon that most students take it for granted so they may be surprised and intrigued by the existence of non-transitive dice.

Possible approach

Before the lesson, create a set of the three dice from the problem.

"We're going to play a game. I need a volunteer to choose one of these three dice. Then I'll choose one too and we'll roll them together - the winner is the person whose die shows the bigger number." Share with the class the numbers that are on each die.

When the volunteer has chosen one of the dice, choose the appropriate die from the two remaining. (Red beats blue, blue beats green and green beats red.)
Roll sufficiently many times for students to doubt whether this is a fair game!
"I seem to be lucky today, or perhaps my die is stronger than yours!"
 
"We're going to play the game again at the end of the lesson. I want you to explore whether you think the game is fair or not, and to work out a strategy for choosing dice that will give you the best chance of winning."
 
If it's not possible to make a set of dice before the lesson, you could introduce the task by asking students to work out how the game could be used to raise money at a school fundraiser, and what strategy the stallholders should use to fleece the public! 
 
As students work on the task in small groups, circulate and observe the methods they are using. For those who have difficulty getting started you could use prompts such as:
"What are the possible outcomes when red plays green? What about when red plays blue? What about when green plays blue?"
"How could you organise the information systematically?"
"Are there any diagrams you could draw that might help?" 
"How could you work out the probability of each of these outcomes?"

After a while, pause the class to share methods of approaching the task, and if appropriate introduce sample space diagrams or tree diagrams as a good organising structure for grouping the different possibilities. Then give them time to use the different methods to complete the task.
 
For those who finish early, challenge them to find other sets of non-transitive dice. This spreadsheet could be used to explore or to check.
 
Finally, bring the class together and invite them to challenge you to another game, using their strategy, and ask them to explain how they arrived at their conclusions.

Possible support

Tricky Track is a simpler context that can be used to introduce sample space diagrams or tree diagrams. 


Possible extension

Dicey Dice invites students to create different sets of non-transitive dice, using the numbers from 1-6. Again, the spreadsheet could be used to consider different possibilities.

You may also like

Nine or Ten?

Is a score of 9 more likely than a score of 10 when you roll three dice?

Master Minding

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

Racing Odds

In a race the odds are: 2 to 1 against the rhinoceros winning and 3 to 2 against the hippopotamus winning. What are the odds against the elephant winning if the race is fair?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo