Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Look Before You Leap

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Alex from Stoke-on-Trent Sixth Form College, Dapeng Wang from Claremont Fan Court School, Chuyi Yang from Loughborough High School, Manuele Cavalli-Sforza from the British School of Manila, Feline Angel from Wootton Upper School and Chong Ching Tong, Chan Hei Leong, Chen Wei Jian and Ng Yan Shun from River Valley High School, Singapore all sent in excellent solutions. The first part of the solution came from the Singapore group and the second part, with the diagrams, from Alex.

If $a + b + c = 4$, $ab + bc + ca = 6$ and $abc = 3$, then

$$\frac {1}{a} +\frac{1}{b} + \frac{1}{c} = \frac {(bc + ac +ab)}{ abc}= \frac {6}{3} = 2.$$

Also $$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}=\frac{( c + a + b )}{abc}= \frac{4}{3}.$$

In the image below, each side of the coloured squares has been assigned the lengths, and the area of each rectangle is written inside the rectangle. The total area of the diagram is the sum of these areas, and is equivalent to $(a+b+c)^2$ showing that this expands to: $a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$.

Squaring both sides of the first equation gives $(a+b+c)^2 = 16$. Multiplying each side of the second equation by 2 gives $2ab + 2ac + 2bc = 12$ . Subtracting these last two equations leaves the sum of the squares so we have $a^2 + b^2 + c^2 = 4$.

cube

cube
Now think of a cube where each face is cut up in a similar way splitting the cube into 27 smaller cuboids. The volume of the cube is $(a + b + c)^3$ . We get the formula for the expansion by adding 27 volumes as shown in the diagrams above and in the table.

The cube has been split into 3 diagrams. The first is the top layer of the cube, with depth a, so the volumes of each of the cuboids is the area of the rectangle multiplied by a. The same is done for the layers below of depth b and c, so the total of the volumes of the cuboids is equivalent to $(a+b+c)^3$. The expression labelling each cuboid is the volume of that cuboid.
Top Layer $a^2$ $ 2a^2b$ $2a^2c$ $ab^2$ $ac^2$ $2abc$
Middle Layer $b^3$ $ a^2b$ $2ab^2$ $2bc^2 $bc^2$ $2abc$
Bottom Layer $c^3$ $a^2c$ $2ac^2$ $b^2c$ $2bc^2$ $2abc$

Adding the volumes we get

$(a+b+c)^3 = a^3 + b^3 + c^3+ 3a^2b+3a^2c+3ab^2+3ac^2 +3b^2c+3bc^2+6abc$.


You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

OK! Now Prove It

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo