Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Receding Baseball

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
  • A simple example when such a throw happens: throw a ball horizontally.
  • Throw a ball vertically up because when it falls down the distance is decreasing.

 

Suppose the acceleration of gravity is $g$ and initial speeds in horizontal and vertical directions are vx and vy. Lets write the equation of motion in horizontal and vertical directions:

$$x(t) = v_x t\;,$$

$$y(t) = v_y t - \frac{gt^2}{2}\;,$$ where $t$ is the time and x, y are coordinates with $x = 0$ and $ y = 0$ for $t = 0$.

A square of the distance between the pitcher and the ball can be expressed as a function of time:

$f(t) = x(t)^2 + y(t)^2$. Note that a distance is a positive number thus if the distance is always increasing so does the square of the distance. This means we want that a derivative of $f(t)$ would be positive for all $t$.

Plug expressions of x and y into the function and calculate derivative with respect to $t$:

$$f(t) =  (v_x t)^2 + \left(v_y t - \frac{gt^2}{2}\right)^2 = (v_x ^2 + v_y ^2)t^2 - g v_y t^3 + \frac{g^2 t^4}{4}\;,$$

$$\frac{df(t)}{dt} = (v_x ^2 + v_y ^2)(2t) - (g v_y)\left(3t^2\right) + \frac{g^2}{4} \left(4t^3\right)$$

because in general if $$f(x) = Cx^{n}$$ where $C$ is a constant and $n$ any real number then $$\frac{df(x)}{dx} = Cnx^{n-1}\;.$$

 

We want that $\frac{df(t)}{dt} > 0$ for all $t$

$$t\left((v_x ^2 + v_y ^2)(2) - (g v_y)(3t) + \frac{g^2}{4} (4t^2)\right) > 0$$ which means that the discriminant of this quadratic equation must be negative (note that $t > 0$) $\therefore$

$v_y^2 < 8v_x^2$ but $v_x, v_y > 0$. Thus, $\frac{v_y}{v_x} < 2 \sqrt{2}$. If the angle at which the ball is thrown is $\alpha$ then $\tan(\alpha) = \frac{v_y}{v_x}$. Therefore, the only condition for such a throw is that the angle at which the ball is thrown must be less than $\tan^{-1}(2\sqrt(2)) =~ 70.5 °$.

1) It depends on an initial angle,  $\alpha < 70.5 °$.

2) It is not dependent on an initial speed of the ball.

3) The condition is the same if we are in the Moon or in the Mars because it does not depend on the acceleration of gravity.

To see why it is not dependent on an initial speed and an acceleration of gravity write the equation of motion in horizontal and vertical directions and get rid of time:

$$y =x \frac{v_y}{v_x} - x^2 \frac{g}{2v_x^2}\;.$$ Moreover, $\tan(\alpha) =\frac{v_y}{v_x}$ and $v_x = v  \cos(\alpha)$. We know that $\sin^2 (\alpha) + \cos^2 (\alpha) = 1$. Divide both sides by $\cos^2 (\alpha)$ to get that $\frac{1}{\cos^2 (\alpha)} = 1 + \tan^2 (\alpha)$. Using these identities we get that 

$$y =x \tan(\alpha) - x^2 \frac{g}{2v^2}\left (1 + \tan^2 (\alpha)\right)\;.$$

  • Green graphs represent trajectories when we change an initial speed
  • Violet graphs represent trajectories when we change an acceleration of gravity
  • Different colors bold graphs represent trajectories when we change an initial angle

 


 


We see that the shape of the parabola is the same if we change an initial speed or an acceleration of gravity.

You may also like

Escape from Planet Earth

How fast would you have to throw a ball upwards so that it would never land?

Gravity Paths

Where will the spaceman go when he falls through these strange planetary systems?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo