Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Population Dynamics - Part 1

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem

Per Capita Rates

It is important to relate the basic population parameters (such as births or deaths) to the size of the whole population. This allows us to make a better decision if a population is at risk.

 

We define the per capita birth rate (or nativity rate) as the number of births per individual per unit time interval: $b=\frac {B}{N}$ .

Similarly we define the per capita death rate (or mortality rate) as the number of deaths per individual per unit time interval:  $d=\frac {D}{N}$

 

The First Model

Recall the population equation from before: $$N_{t+1}=N_t+B-D$$ Because per capita birth and death rates do not change with the size (or density) of the population, we can rewrite our model in terms of per capita rates: $$N_{t+1}=N_t+bN_t-dN_t=N_t+(b-d)N_t$$ This model is said to be density-independent.

 

We call the term $r=b-d$, the geometric rate of increase. Note that $r=\frac{\Delta N_t}{N_t}$ , so r can be interpreted as the per capita rate of change of population size.

 

The equation for our model becomes: $$\begin{align*} N_{t+1}&=N_t+rN_t \\ &=(1+r)N_t \\ &=\lambda N_t \end{align*}$$ where $\lambda=1+r$ is defined as the finite rate of increase. Note that $\lambda=\frac{N_{t+1}}{N_t}$ , so $\lambda$ can be interpreted as the ratio between the population size at one time to another time.

 

How do you think we can solve this new equation? Go here for more information.

Do you think this model is valid in reality? What problems do you think might occur? Think about environmental resources and density-independence. An investigation of these problems can be found here.

 

Question:

If 20 sea otters from a total population of 850 are fatally affected by disease, what is the mortality as a per capita rate?

Given the population is initially 850, and increases to 1000 after one year, what is the value of $\lambda$?

Use this to find the per capita birth rate, and find the population size in ten years.


Related Collections

  • More Population Dynamics

You may also like

Ball Bearings

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

Cushion Ball

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo