Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Big Cheese

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

I met up with some friends yesterday for lunch. On the table was a good big block of cheese. It looked rather like a cube. As the meal went on we started cutting off slices, but these got smaller and smaller! It got me thinking ...

What if the cheese cube was $5$ by $5$ by $5$ and each slice was always $1$ thick?

It wouldn't be fair on everyone else's lunch if I cut up the real cheese so I made a model out of multilink cubes:

You could of course, just make $5$ slices but I wanted to have a go at something else - keeping what is left as close to being a cube as possible.

You can see that it's a $5$ by $5$ by $5$ because of the individual cubes, so the slices will have to be $1$ cube thick.

So let's take a slice off the right hand side, I've coloured it in so you can see which bit I'm talking about:

  This now gets cut off and we have:   
 

The next slice will be from the left hand side (shown in a different colour again):

Well the knife cuts and we are left with: 
 

Remember I'm setting myself the task of cutting so that I am left with a shape as close to a cube shape as possible each time.

So the next cut is from the top. Hard to cut this so I would have put it on its side!

I'll remove that and I'm left with the $4$ by $4$ by $4$ cube


I do three more cuts to get to the $3$ by $3$ by $3$ and these leave the block like this:

 
I'm sure you've got the idea now so I don't need to talk as much about what I did:
  and then onto:

That leaves you with two of the smallest size cube $1$ by $1$ by $1$.

If we keep all the slices and the last little cube, we will have pieces that look like (seen from above):

C H A L L E N G E

Now we have thirteen objects to explore.
  • What about the areas of these as seen from above?
  • What about the total surface areas of these?
  • What about their volumes of the pieces?

A L S O

Investigate sharing these thirteen pieces out so that everyone gets an equal share.


What about ...?

I guess that once you've explored the pattern of numbers you'll be able to extend it as if you had started with a $10$ by $10$ by $10$ cube of cheese.


You may also like

Cubes

How many faces can you see when you arrange these three cubes in different ways?

Wrapping Presents

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Cubic Conundrum

Which of the following cubes can be made from these nets?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo