Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Ellipses

Age 14 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Well done Ryan and Prateek from Riccarton High School, Christchurch, New Zealand and Andrei from School 205, Bucharest, Romania for your solutions.

Ryan noticed that the formula x 2 / 36 + y 2 / 16 = 1 gives a large ellipse crossing through points 6 and -6 on the x axis and points 4 and -4 on the y axis. From this he observed that the formula contains (x 2 / 36) and 36 is a square of 6 and -6. When x takes these values then y=0. This also works for the part of the formula (y 2 / 16) as 16 is a square of 4 and -4. When y takes these values then x=0.

Andrei explained how he found the other equations as follows.

I represented first the curve: $$x^2 + y^2 = 1 \quad (1)$$

For this, I observed that both x and y could have values between -1 and +1. I consider x as the independent variable, and from the eq. (1) I determined y: $$y = \pm \sqrt{1 - x^2}$$

I gave values to x, from -1 to 1, step 0.1, and I calculated y. I had to calculate two sets of values for y, one corresponding to the plus sign, the other to the minus sign. Then I plotted y as a function of x for both, and I obtained the circle in the middle.

For the curve $$\frac {x^2}{36} + \frac {y^2}{16} = 1 \quad (2)$$

I considered again x as the independent variable. It varies between -6 to 6. The equation for y is: $$y = \pm \sqrt{16( 1 - \frac {x^2}{36})}= \pm4 \sqrt {1 - ( \frac{x^2}{36})}$$

It is visible even from the equation that y varies between -4 and 4.

Now, as I understood that in the general equation: $$\frac {x^2}{a^2} + \frac {y^2}{b^2} = 1 \quad (3)$$

x varies between -a and a, and y between -b and b, I drew all other curves in the same manner. The equations of the other 8 graphs are: $$\frac {x^2}{7^2} + \frac {y^2}{4^2} = 1 \quad (4)$$ $$\frac {x^2}{5^2} + \frac {y^2}{4^2} = 1 \quad (5)$$ $$\frac {x^2}{4^2} + \frac {y^2}{4^2} = 1 \quad (6)$$ or , i.e. a circle of radius 4. $$\frac {x^2}{3^2} + \frac {y^2}{4^2} = 1 \quad (7)$$ $$\frac {x^2}{2^2} + \frac {y^2}{4^2} = 1 \quad (8)$$ $$\frac {x^2}{1^2} + \frac {y^2}{4^2} = 1 \quad (9)$$ $$\frac {x^2}{6^2} + \frac {y^2}{3^2} = 1 \quad (10)$$ $$\frac {x^2}{7^2} + \frac {y^2}{1^2} = 1 \quad (11)$$

All these ellipses are symmetrical about both x and y axes because by changing x to -x and/or y to -y the equation (3) doesn't change.


You may also like

Cubic Spin

Prove that the graph of f(x) = x^3 - 6x^2 +9x +1 has rotational symmetry. Do graphs of all cubics have rotational symmetry?

Sine Problem

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

Parabolic Patterns

The illustration shows the graphs of fifteen functions. Two of them have equations y=x^2 and y=-(x-4)^2. Find the equations of all the other graphs.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo