Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Parabolas Again

Age 14 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

This problem was solved by Ali Abu Hijleh, age 13, Alex Liao, age 14 and Prateek Mehrotra, age 14 from Riccarton High School, Christchurch, New Zealand and Andrei Lazanu, age: 12 from School No. 205, Bucharest, Romania. Well done all of you. This is Andrei's solution:

I observed that the equations of the parabolas given in the problem are of the form: $y = a(x + b)^2 + c$

where positive corresponds to parabolas with the opening towards the top, and negative to parabolas with the opening towards the bottom; are the coordinates of the peak. I identified the parabolas in your pattern and I verified them with the help of a small program in Matlab:

x=-8:0.1:8

y1=-2*(x+6).*(x+6)-2

y2=-2*(x+4).*(x+4)-1

y3=-2*(x+2).*(x+2);

y4=-2*x.*x+1;

y5=-2*(x-2).*(x-2)+2;

y6=-2*(x-4).*(x-4)+3;

y7=-2*(x-6).*(x-6)+4;

y8=2*(x+6).*(x+6)+2;

y9=2*(x+4).*(x+4)+1;

y10=2*(x+2).*(x+2);

y11=2*x.*x-1;

y12=2*(x-2).*(x-2)-2;

y13=2*(x-4).*(x-4)-3;

y14=2*(x-6).*(x-6)-4;

plot(x,y1,x,y2,x,y3,x,y4,x,y5,x,y6,x,y7,x,y8,x,y9,x,y10,x,y11,x,y12,x,y13,x,y14)

hold

axis([-8 8 -4 4]);

grid

Consequently, the equations of the 14 parabolas in your pattern are:

$y = -2(x + 6)^2 - 2$

$y = -2(x + 4)^2 - 1$

$y = -2(x + 2)^2$

$y = -2x^2 + 1$

$y = -2(x - 2)^2 + 2$

$y = -2(x - 4)^2 + 3$

$y = -2(x - 6)^2 + 4$

$y = 2(x + 6)^2 + 2$

$y = 2(x + 4)^2 + 1$

$y = 2(x + 2)^2$

$y = 2x^2 - 1$

$y = 2(x - 2)^2 - 2$

$y = 2(x - 4)^2 - 3$

$y = 2(x - 6)^2 - 4$

I created my own pattern with a Matlab program and here are the graphs:

Matlab graphs.

Andrei supplied the Matlab program but in order to challenge you to find his equations it is not reproduced here


You may also like

Cubic Spin

Prove that the graph of f(x) = x^3 - 6x^2 +9x +1 has rotational symmetry. Do graphs of all cubics have rotational symmetry?

Sine Problem

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

Parabolic Patterns

The illustration shows the graphs of fifteen functions. Two of them have equations y=x^2 and y=-(x-4)^2. Find the equations of all the other graphs.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo